
Comparison Of Reinforcement Learning Algorithms

Siddhant Garg Andrew Teeter

1 Introduction

In this project we implement REINFORCE with Baseline [9] and PPO [6]. The goal of this project was to
implement some reinforcement learning algorithms and then evaluate their performance in various environ-
ments. All the environments used in this project were implemented by OpenAI Gym [3]. We will now give
brief descriptions about each of the environments.

1.1 Cart Pole

The Cart Pole problem consists of a pole on a cart. The goal is to balance the pole for as long as possible
without leaving the designated area or allowing the pole to fall more than 15 degrees from vertical. For each
time step that the pole remains balanced, the agent is provided one reward. The agent can either move
left or right. This is an example of an environment with a dense reward function as the agent is provided
rewards at every time step. This is a finite horizon environment with maximum horizon of length 200. If
the agent gets the reward of 200, then the agent wins and the game is terminated.

1.2 Lunar Lander

The Lunar Lander problem consists of a rocket and a landing pad designated by two flags. The goal is to
land the rocket in between the two flags at a slow enough velocity to not crash. The agent gets a reward
of -0.3 for every time step that the main engine is fired and -100 if the rocket crashes. The agent is given
100 reward of 100 for landing, 100 additional for landing on the landing pad, and another 10 for leg that
touches the ground. The episode ends when the rocket either crashes or comes to rest. The agent can do
four discrete actions those include using the left engine, using the right engine, firing the main downward
engine, or do nothing. This reward function is more sparse than Cart Pole as the large rewards are given
out at the end of the episode. When the agent gets a total reward of more than 200, then it is considered as
a win.

1.3 Breakout

Breakout is a classic atari game that was implemented as an OpenAI gym [2]. The goal is move a paddle
to bounce a ball against bricks on the top of the screen. Reward is gained for each brick broken. The agent
has the ability to move right, left, or do nothing. The state is given in terms of the pixels of the game.

2 REINFORCE with Baseline

REINFORCE is a policy gradient algorithm first described by Williams [9] in 1992 and is further described
by Sutton and Barto [8]. The foundation of the algorithm relies on the fact that the expected return of
an episode is proportional to the gradient. This means that the policy can be updated based off of the
Monte Carlo value estimates of a given episode. An extension to the REINFORCE algorithm is the use of

1

a Baseline. A baseline is any function that is independent of the action taken at a given time step. The
addition of a baseline function is used to further reduce the variance of the REINFORCE algorithm and help
to converge faster. Commonly, some estimate for the value function of the given MDP is used as a baseline.
The psuedocode for the REINFORCE with Baseline algorithm can be seen below 1.

Algorithm 1 REINFORCE with Baseline[8]

Input: Differentiable policy parameterization π(a|s,θθθ)
Input: Differentiable value-function parameterization v̂(s,www)

Parameters: Step sizes αθ > 0, αw > 0
θθθ ← 000 ∈ Rd

www ← 000 ∈ Rd′

while True do
Generate episode following π
for St, At, Rt + 1 in the episode with T steps do

G←
∑T

k=t+1 γ
k−t−1Rk //Discounted Return

δ ← G− v̂(St,www)
www ← www + αwδ∇v̂(St,www)
θθθ ← θθθ + αθδ∇ log(π(At|St, θθθ))

end for
end while

Implementation Details

For this project, neural networks were used for the policy and value function parameterizations. This
seemed like a logical choice because it allows for a large range in complexity that can be tuned to the specific
environment that the algorithm is being evaluated on. It is also efficient in interpreting continuous states.
Both the networks consist of a single hidden layer followed by a ReLU activation function. The networks
were trained using an Adam optimizer. The policy is given by the softmax of the output logits of the policy
network. The biggest downside of relying on Monte Carlo return to inform the updates of the policy and
value function estimates is that there is a large amount of variance. Slightly deviating from the original
algorithm, the implementation created for this project performed episode generation and policy and value
function updates in batches. This was to help reduce the variance of the Monte Carlo return of the episodes
and help to avoid local maxima in the return. All hyperparameters including hidden layer size, learning rates,
discount rates, and batch size, were selected through the use of a grid search over various combinations.

Cart Pole

For Cart Pole, the model was trained using a hidden layer size of 32, learning rates of .02 for each network,
discount rate of .99, and a batch size of 64. Given this relatively simple environment, REINFORCE with
Baseline was able to solve it relatively quickly as can be seen in Figure 1. It can be seen that the agent solves
the environment and the variation in returns starts to reduce as the number of episodes increases. Figure 2
shows the loss of both the policy network and the value function network during the training process. At the
beginning of training, the value-function loss sharply increases at the same time that the policy loss sharply
increases. This is indicative of the agent running into a new strategy that allows for a higher reward than
before. In this case, the agent learns one method for stopping the pole from falling over.

Lunar Lander

For Lunar Lander, the model was trained using a hidden layer size of 64, learning rates of .005 for each
network, discount rate of .99, and a batch size of 64. As can be seen in the charts in Figure 3 Lunar Lander
is a much more difficult problem for REINFORCE to solve. These charts show that the algorithm learns
very slowly in this environment. Two key points can be seen in the graph of steps per episode. It can be
seen where the agent learns that preventing a crash using the main engine because the average number of
steps per episode dramatically increases. The steps then dip as the agent reduces how often it fires the main

2

Figure 1: Results over ten training runs of REINFORCE with Baseline on the Cart Pole environment.

Figure 2: Training Loss over ten training runs of REINFORCE with Baseline on the Cart Pole environment.

3

Figure 3: Results over ten training runs of REINFORCE with Baseline on the Lunar Lander environment.

Figure 4: Results from the best training run of REINFORCE with Baseline on the Lunar Lander environment.

engine in order to reduce the amount of negative reward. The episode length increases again as the agent
tries to land on the landing pad. This is also visible in the policy loss chart in Figure 5. These step can
more clearly be seen in the best run shown in Figure 4. Some of the runs were not able to completely solve
the environment, but this is an example of a training run where the agent was able to solve it.

Figure 5: Training Loss over ten training runs of REINFORCE with Baseline on the Lunar Lander environ-
ment.

4

Breakout

Using a small convolutional neural network each for the policy and value function parameterizations, RE-
INFORCE with Baseline was able to achieve a reward of 1 on breakout. The rewards given in breakout can
be very sparse and there is a large state space to explore. The policy network would completely converge
before the agent was able to score any higher than 1 reward. Getting to this reward took many episodes and
exemplifies the difficulty of tuning REINFORCE on larger state spaces and sparse reward functions.

3 Proximal Policy Optimization

In this section we will describe the details of a popular policy gradient estimator called Proximal Policy
Optimization(PPO) [6]. The policy gradients methods are popular in reinforcement learning because they
can be used with non linear function approximators like neural networks and optimize for achieving high
rewards. But the vanilla policy gradient estimates have high variance and a high sample complexity. The
policy updates are often not steady and stable and they largely depends on the trajectory that is being used
to estimate the policy gradient. There are several methods to improve the sample complexity and reduce
the variance of the policy gradient estimators. As described in [5], the general form of policy gradient can
be expressed as equation 1

ĝ = E
[∞∑

t=0

Ψt∇
θ
log πθ(st, at)] (1)

The function Ψt can be substituted with

1. Gt =
∑∞

k=t γ
k−trk (discounted returns) 3. δ̂t = rt + γV̂ π(st+1)− V̂ π(st) (TD error)

2. Q̂π(st, at) (Action-value function) 4. Ât(st, at) = Q̂π(st, at)− V̂ π(st, at) (advantage)

Generalized Advantage Estimator

Before diving into the PPO algorithm, we will briefly describe the Generalized Advantage Estimators[5] that
are used for estimating the policy gradients for PPO and many other policy gradient algorithms. These
estimators reduce the variance of policy gradients estimators but induces some degree of bias.

For the policy gradient methods, the advantage function Ât(st, at) gives the lowest variance for the policy
gradient estimates for equation 1. The advantage function calculates difference between the action-value
function and the state value function for a state-action pair at time t. It denotes whether the action at is
better or worse than the current value estimate of the state st. The policy gradient with the Ψt = Ât(st, at)
calculates the policy gradient and takes the step that ”increases the probability of the better than average
actions and reduce the probability of worse than the policy’s default behaviour” [5].

Now let’s consider the TD error δt = rt + γV π(st+1)− V π(st). Note that δt is an estimate of the advantage

function Ât(st, at). Let’s call this estimate Â
(1)
t = δt and sum of k of the TD error terms as Â

(k)
t .

Â
(1)
t := δt = −V̂ (st) + rt + γV̂ (st+1) (2)

Â
(2)
t := δt + γδt+1 = −V̂ (st) + rt + γrt+1 + γ2V̂ (st+2) (3)

Â
(3)
t := δt + γδt+1 + γ2δt+2 = −V̂ (st) + rt + γrt+1 + γ2rt+2 + γ3V̂ (st+3) (4)

(5)

Â
(k)
t :=

k−1∑
l=0

γlδt+l = −V̂ (st) + rt + γrt+1 + . . . γk−1rt+k−1 + γkV̂ (st+k) (6)

Note that for k = 1, the advantage estimate has highest bias and as k →∞, the advantage estimate becomes

Â
(∞)
t = V̂ (st)+

∑∞
l=0 γ

lrl, which has the lowest bias. The Generalized Advantage Estimator is then defined

5

as the exponentially weighted average of Â
(k)
t .

Â
GAE(γ,λ)
t := (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
(7)

=

∞∑
l=0

(γλ)lδt+l (8)

GAE(γ, 0) = Â
(1)
t

GAE(γ, 1) = Â
(∞)
t

We can see that GAE(γ, 0) has the lowest variance but a high bias whereas GAE(γ, 1) has a high variance
and low bias. The parameter λ, (0 < λ < 1) controls the bias-variance trade-off in GAE(γ, λ).

Trust Region Methods and PPO

As we discussed, the policy gradient methods described in equation 1 are unstable and could lead to either
very large updates for some states or very low updates some other states. Also, from the equation 1, we
can see that we have to sample a complete episode before updating our policy. This procedure is very slow
and leads to sample inefficiency. However, to address the issue of sample efficiency, trust region methods
use a ”surrogate” objective function [7, 6] that can be updated using the trajectories of an old policy and
new trajectories are sampled fairly regularly after updating the old policy for some iterations. To avoid any
drastic updates in policy the trust region methods apply a constraint on how much a policy can be updated
in a single iteration. For example, Trust Region Policy Optimization(TRPO) [7] uses a hard constraint in
terms of maximum KL-Divergence between the old policy and the new policy. PPO applies a much simpler
constraint on the ratio of the new policy and old policy by clipping the surrogate objective function. Let’s

consider θ as the policy parameters and define rt(θ) =
πθ(st,at)

πθold
(st,at)

which the ratio of the current policy and

some old policy at time step t. The ”surrogate” objective function is defined as

L(θ) = Ê
[πθ(st, at)

πθold(st, at)
Ât

]
= Ê[rt(θ)Ât] (9)

PPO penalizes the objective function of equation 9 when rt(θ) moves away from 1 by a large amount by
clipping the value of rt(θ). More specifically PPO optimizes the clipped surrogate function.

LPPO(θ) = Ê
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(10)

where ϵ is the hyperparameter that constraint the value of rt(θ) within [1−ϵ, 1+ϵ]. PPO takes the minimum
value of the clipped and unclipped surrogate function for updating the policy with small steps that leads to
a stable policy gradient algorithm. The policy πθ is implemented using neural networks with weights θ and
therefore, the gradients of LPPO can be calculated using the autograd methods in PyTorch.

The advantages, Ât used in L(PPO), are the truncated Generalized Advantage Estimators(GAE). They are
calculated by estimating the value function using a neural network function approximator. The truncated
GAE calculate the value of Ât within T timesteps, where T is much less than the episode length.

Ât = −V (st) + δt + γλδt+1 + · · ·+ (γλ)T−t+1δT−1, (11)

δt = rt + γV̂w(st+1)− V̂w(st) (12)

In the above equations, V̂w represents the value function neural network called critic network, with parameters
w. The target values for updating the critic network are the discounted returns for T time steps.

V target
t (st) = rt + γrt+1 + · · ·+ γT−trT (13)

The critic network is updated by minimizing the mean squared error between the target and the predicted
values called Lcritic(w).

Lcritic
t (w) =

1

2

(
V target
t (st)− Vw(st)

)2

(14)

6

Furthermore, to ensure sufficient exploration, PPO also uses an entropy objective with called Sθ(st). There-
fore, the loss function for updating the policy and backpropagating the gradients throught the neural network
can be defined as

Lt(θ) = −L(PPO)(θ)− cSθ(st) (15)

In the above equation c is a small coefficient (≈ 0.01) to control the degree of exploration. Minimizing
the loss function of equation 15 using automatic differentiation libraries of PyTorch with gradient descent
methods will increase the surrogate objective in equation 10 and also encourage some degree of exploration by
increasing the entropy of the current policy so that the agent does not get stuck in the suboptimal solution.

Algorithm

Algorithm 2 PPO-Clip

Input: γ, λ, ϵ, c πθ, Vw

Initialize the policy parameters θ, and the value function parameters w randomly.
for iteration = 1, 2, . . . do

for n = 1, 2, . . . , N do
Run πθold for T timesteps and collect {(st, at, rt)}Tt=0

Compute advantage estimates Â1, Â2, . . . , ÂT using equation 11
Compute the estimated returns R̂1, R̂2, . . . , R̂T using equation 13
Store the tuples of (st, at, R̂t, Ât) in a memory buffer.
end for
for k = 1, 2, . . . ,K epochs do
Sample M(≤ NT) tuples from the buffer and calculate the following objective functions.

rm(θ) =
πθ(sm, am)

πθold(sm, am)

L̂PPO(θ) =
1

M

M∑
m

min
(
rm(θ)Âm, clip(rm(θ), 1− ϵ, 1 + ϵ)Âm

)
Ŝ(θ) = − 1

M

M∑
m=1

πθ(sm, am) log πθ(sm, am)

L̂critic(w) =
1

M

M∑
m=1

1

2

(
Vw(sm)− R̂m

)2

Minimize L̂(θ) = −L̂PPO(θ)− cŜ(θ) and L̂critic(w) using Stochastic Gradient Descent with Adam.
end for

end for

Experiments and Results

PPO was trained on two different domains called Lunar Lander and Cartpole as the part of the project. We
also trained PPO on the Atari Breakout domain for extra credits. In this section, we will describe the details
of the neural network architectures that are used to learn the policies and value functions for each of the
domains separately. Lunar Lander and Cartpole domains use the same neural network design for both the
policy and the value function. For Breakout domain, the neural networks for policy and value function contain
convolutional layers for processing the RGB inputs. Despite the different types of feature extraction layers
of the neural networks, all the domains have discrete action space. Lunar Lander and Breakout has 4 actions
whereas Cartpole has 2 actions. Full code and video can be found https://github.com/gargsid/Proximal-
Policy-Optimization.

7

https://github.com/gargsid/Proximal-Policy-Optimization
https://github.com/gargsid/Proximal-Policy-Optimization

Lunar Lander Cartpole Breakout
Input - 8 Input - 8 Input - (4,84, 84)

FC + ReLU - 128 FC + ReLU - 128 Conv, C=32, K=8, S=4
FC + ReLU - 128 FC + ReLU - 128 Conv, C=64, K=4, S=2
FC + ReLU - 128 FC + ReLU - 128 Conv, C=64, K=3, S=1

FC(logits)-4, FC(value)-1 FC(logits)-2, FC(value)-1
FC-512

FC(logits)-4, FC(value)-1

Table 1: The above table describes the details of the neural network design for the policy and the value
functions in case of PPO. Separate actor(policy) and critic(value function) networks are used and they share
the same feature extraction design. The architecture design gets different in the last row only where the
policy network output multidimensional logits vector whereas the value function network outputs a single
value estimate of the input state. FC: Fully-connected layers, C: channels, K: kernel size, S: stride.

(a) rewards (b) Episode length (c) ”Surrogate” Loss

(d) Critic Loss (e) Entropy (f) KL-Divergence

Figure 6: PPO results on Lunar Lander domain. Note the average rewards in fig.(a) that we achieved for
this domain is around 300 with PPO. The PPO algorithm was run 10 times for 1000 episodes each.

Neural Network Architecture details for Policy and Value Functions

For the Lunar Lander and Cartpole domains, we trained two separate neural networks with three fully
connected layers with ReLU [1] for modeling the policy and value function. The policy network outputs a
fixed length vector of logits depending on the action space of the domain. The logits are normalized using
softmax function to get the probability values between 0 and 1. The policy is then constructed using the
Categorical distribution, from which the actions are sampled while running the PPO algorithm. The value
function network contains the same design as the policy network for processing the input features but outputs
only a single value for the value function estimate of the current state. Both the networks are optimized
using Adam optimizer with learning rate of 10−3 and clip value, ϵ = 0.2. The feature extraction layers of the
Breakout consists of three convolutional layers and a fully connected layer with ReLU activation functions.
The details of the feature extraction layers for all the three domains are given in the Table 1.

8

(a) Step-1 (b) Step-100 (c) Step-150

(d) Step-200 (e) Step-250 (f) Step-298

Figure 7: The figure consists of the states from a 298 step episode run with the trained policy with PPO.
In figure (b) the agent fires the engine to come closer to the landing area and accumulates the reward in
figure (c). In the final figure (f) we can see that the agent successfully landed between the flags and the final
accumulated reward is 296.12. Full code and video can be found here.

Processing States for Breakout

The Breakout OpenAI gym environment outputs an RGB image of height 210 and width 160. The image
frame represents the current state of the game as it is a snapshot of the position of the ball, paddle, and the
remaining bricks. However, this state does not consist enough information to model this game as a Markov
Decision Process(MDP) because based on the snapshot of the game the agent cannot decide how to move
the paddle. The agent needs to know in which direction the ball is going to make the decision. Therefore,
to make this as an MDP we take a same action four times to get four different snapshot of the game after
every action. During the execution of the four actions the ball has moved in some direction. Now, to make
this state as an MDP the idea is to stack the four frames on top of each other to create a new state and then
give this state as the input to the agent. Note that this state consists of enough information for the agent
to take an action which leads to a high reward. To further reduce the complexity of inputs, the RGB frame
is converted to grayscale images and downsampled from (210, 160, 3) to (84, 84) image. The four frames
are then stacked together to give (4, 84, 84) dimensional state. To create the next state for the breakout, the
sampled action is again repeated 4 times and the next state is then created by removing the first grayscale
frame from the current state and appending the new grayscale frame to the current state at the end. The
action space of the game consists of four discrete action - do nothing, fire(to start the game), move left, move
right. The game does not start automatically so, after resetting, we execute the action fire to start the game
so that the agent does not have to learn to do it.

Hyperparameters Values of PPO

The value of hyperparameters were referenced from the PPO paper [6] and the TRPO paper [7] and then
fine-tuned to fit the Lunar Lander and Cartpole domains. Specifically, the value of γ = 0.99, λ = 0.95 was
kept constant for all the experiments. Also, from our experiments we saw that the large number of episodes
and large values of T increases the convergence rates of the algorithm. Specifically, for Lunar Lander and
Cartpole, most of the configurations were same. We sampled minimum of N = 10 trajectories for each
iteration and we set the value of T = 1024. This value of T for both of the domains is more than the

9

https://github.com/gargsid/Proximal-Policy-Optimization

(a) rewards (b) Episode length (c) ”Surrogate” Loss

(d) Critic Loss (e) Entropy (f) KL-Divergence

Figure 8: PPO results on Cartpole domain. Note the average rewards that we achieved for this domain is
200 with PPO. Since the reward function in Cartpole is the number of steps in the episode the graphs (a)
and (b) are same. The PPO algorithm was run 10 times on cartpole for 1000 episodes for each run. Full
code and video can be found here.

(a) Step-1,
R = 0

(b) Step-35,
R = 34

(c) Step-70,
R = 64

(d) Step-140,
R = 139

(e) Step-175,
R = 174

(f) Step-200,
R = 200

Figure 9: The figure consists of the states from a 200 step episode run with the trained policy with PPO
on Cartpole domain. The agent is successfully able to maintain the balance of the pole and collects the
maximum reward of 200. Full code and video can be found here.

maximum episode length and therefore the agent samples the whole episode before updating the policy. For
the hidden dimensions of the policy and value function networks, we experimented with h = 64, 128, 256
among which the h = 128, resulted in optimal results. We used Adam [4] optimizer with learning rate of
10−3 without any decay. The value of ϵ was set to 0.2. The values of M = 256 and K = 4 were constant for
all the experiments.

The Breakout domain has a separate of hyperparameters. In the PPO [6] paper, the authors have used a clip
value of ϵ = 0.1 and learning rate as 2.5×10−4 with linear decay rate applied to both the parameters. In our
experiments we used the same value of learning rate and set the value of ϵ = 0.2. We fixed the maximum
number of iterations of PPO algorithm to 105 and apply linear decay rate on both the learning rate and ϵ.
The episode length of a trajectory for Breakout is also considerably bigger than the Cartpole domain and
we saw that high values of T like T = 2048, and T = 4096 results in learning of the agent. Unfortunately,
we were only able to train the agent to get a reward of 5. The graph of which is shown in figure 10

10

https://github.com/gargsid/Proximal-Policy-Optimization
https://github.com/gargsid/Proximal-Policy-Optimization

(a) Rewards (b) Test Rewards

Figure 10: The figure consists of the learning statistics of the PPO trained agent on Breakout domain. From
fig. (a) we can see that currently the agent is able to collect a cumulative reward of 4 in every episode
without losing any life. In fig (b) we can see that the agent has collected the reward of 5 after 5 lives during
test time. The agent is stuck at the left side always. Full code and video can be found here.

4 Sarsa(λ)

Sarsa(λ) was implemented as an extra credit third algorithm. Sarsa(λ) is an extension of the TD(λ) algo-
rithm. Are both reliant on the use of decaying eligibility traces called the λ return. Eligibility traces allow
for algorithms to operate in between the extremes of Monte Carlo methods and one step methods. The
benefit of eligibility traces over n-step methods is that it allows for decaying weights to be applied and for a
computational advantage.

The main hurdle to overcome is handling a continuous state with Sarsa(λ). A common approach to achieving
this is through the use of tile coding [8]. Creating a tile involves partitioning the state space into different
partitions and assigning each of those partitions a different index. In order to gain more fine-tuned state
representations, a tile coding consists of multiple tilings set apart by some offset. The state is then represented
by the index of each partition that is active in each tiling. The use of a tile coding translates a continuous
state space into a discrete one. This tile coding can be used as the function F that is required in the
pseudocode for Sarsa(λ) 3.

Implementation Details

The state is translated to indices by 10 tilings of 10 bins each offset by a uniform distribution of 1/10 of
their each respective feature’s range. Actions are selected according to a softmax policy over the state action
value function.

Cart Pole

For Cart Pole, the Sarsa agent was trained with a learning rate of .25, trace decay of .9, and a reward discount
of .99. As can be seen in Figure 11, the algorithm converges in a very small number of episodes albeit to a
non optimal score. The reason that the agent does not improve past a score of 150 is that it doesn’t learn
to avoid the edge of the designated area. This may be due to a non optimal tiling implementation making
the edge of the designated area difficult to discern in the parameterized functions.

Other Environments

Due to the much larger state spaces of both Lunar Lander and Breakout, it was not feasible to learn in these
environments using this implementation of Sarsa(λ). The tabular tiling method grows exponentially with
the dimensions of the state vector and the memory requirements of this implementation were the limiting
factor of testing this algorithm in more complex environments.

11

https://github.com/gargsid/Proximal-Policy-Optimization

Algorithm 3 Sarsa(λ)[8]

Input: function F(s, a) that returns the indices of active features
Parameters: step size α > 0, trace decay λ ∈ [0, 1]

Initialize: www ∈ Rd //State Action parameterization
Initialize: zzz ∈ Rd //Trace Parameterization
while True do

Initialize: S ← initial state
Choose A ∼ π(S)
zzz ← 000
for Each step of Episode do

Take action A, observe R,S′

δ ← R
for i in F(S,A) do

δ ← δ −wwwi

zzzi ← 1 //Replacing Traces
end for
if S′ is terminal then:

www ← www + αδzzz
Move to next episode

end if
Choose A′ ∼ π(S′)
for i ∈ F(S′, A′) do

δ ← δ − γwiwiwi

end for
www ← www + αδzzz
zzz ← γλzzz
S ← S′;A← A′

end for
end while

Figure 11: Results over ten training runs of Sarsa(λ) on the Cart Pole environment.

12

(a) Rewards collected on Lunar
Lander

(b) Episode length for Lunar Lander (c) Rewards collected on Cartpole

Figure 12: The figure shows the comparison of different RL algorithms on Lunar Lander and Cartpole
domains. In figures (a), and (b) we can see that the PPO (orange) performs better than REINFORCE with
baselines on Lunar Lander Environment. From figure (c) we can see PPO (green) has the best performance
when compared with REINFORCE, and Sarsa (λ).

5 Discussion and Comparison

Overall, PPO offered the most robust performance out of the three algorithms by a large margin. On Cart
Pole, Sarsa(λ) converged faster but it did not converge to the optimal solution. In all cases REINFORCE
with Baseline converged the slowest and was never able to out perform PPO. Charts summarizing these
results can be seen in Figure 12. On Lunar Lander, in the number of episodes that PPO was able to solve
the environment, REINFORCE with baseline was barely able to make any progress at all.

Summary Of Contributions

Andrew implemented REINFORCE with baseline and Sarsa(λ) while Siddhant implemented Proximal Policy
Optimization.

References

[1] Abien Fred Agarap. “Deep learning using rectified linear units (relu)”. inarXiv preprint
arXiv:1803.08375 : (2018).

[2] M. G. Bellemare andothers. “The Arcade Learning Environment: An Evaluation Platform for General
Agents”. inJournal of Artificial Intelligence Research: 47 (june 2013), pages 253–279.

[3] Greg Brockman andothers. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].

[4] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. inCoRR:
abs/1412.6980 (2015).

[5] John Schulman andothers. “High-dimensional continuous control using generalized advantage estima-
tion”. inarXiv preprint arXiv:1506.02438 : (2015).

[6] John Schulman andothers. “Proximal policy optimization algorithms”. inarXiv preprint
arXiv:1707.06347 : (2017).

[7] John Schulman andothers. “Trust region policy optimization”. inInternational conference on machine
learning : PMLR. 2015, pages 1889–1897.

[8] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[9] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning”. inMachine Learning : 8 (2004), pages 229–256.

13

https://arxiv.org/abs/1606.01540

	Introduction
	Cart Pole
	Lunar Lander
	Breakout

	REINFORCE with Baseline
	Proximal Policy Optimization
	Sarsa()
	Discussion and Comparison

