
DISTRIBUTED VIDEO PROCESSING SYSTEM USING SPARK

Siddhant Garg * 1 Sridhama Prakhya * 1

ABSTRACT
In this work, we tackle the problem of building a scalable video processing system, where the goal is to extract,
store, and retrieve characteristic visual features from videos. We will use a machine learning model, called CLIP,
for supporting large set of objects and action classes and to find a list of high-precision tags for every video. To
effectively handle large video datasets, the proposed system leverages PySpark on top of PyTorch for enabling
the automatic distribution of workloads across different processes and for making fast inferences on GPU. A
MongoDB database server hosts the extracted set of tags for each video to support fast indexing and retrieval.

1 INTRODUCTION

Nowadays, a lot of video content is being constantly gen-
erated across different platforms which have necessitated
the invention of efficient processing, indexing, and retrieval
video processing systems. For extracting useful information
from the videos, initial approaches used readily available
information like meta-data, textual information, or keyword
annotation for indexing videos. Later on, people started div-
ing deeper and extracting visual information using heuristic-
based frame-based descriptors (Cha et al., 2017) to capture
motion activity (Liu et al., 2017), texture (Zhou et al., 2020),
shape, or color (Minaei et al., 2017) which describes the low-
level visual content using pixel values of the image frames.
Furthermore, with the advent of machine learning models,
it became possible to make more high-level and diverse sets
of predictions on video frames. However, these methods are
very slow considering the large number of frames involved,
even in a small video. On top of this, the machine learning
models support limited batch size in one forward pass which
requires efficient batching, sampling and aggregating the
extracted tags across all frames in a single video. There-
fore, it is essential to develop scalable and distributed video
processing systems with machine learning support for high
quality video information retrieval.

Motivation: Parallelizing video processing for machine
learning applications is very difficult and manually intensive
work with standalone frameworks like PyTorch. Although,
the PyTorch library is highly optimized to support for mak-
ing parallel machine learning inferences but the APIs for
efficient frame sampling is still lacking in many ways. The

*Equal contribution 1Department of Computer Science, Uni-
versity of Massachusetts Amherst. Correspondence to: Sid-
dhant Garg <siddhantgarg@umass.edu>, Sridhama Prakhya
<sprakhya@cs.umass.edu>.

major issues in the existing implementations is that they use
randomized algorithms to sample a fixed amount of frames
for every video to ensure a fixed batch size. This approach
is only suitable for training machine learning models on
video datasets because repeated iterations will ensure that
the model gets trained on most of the frames. Furthermore,
the video-level atomicity is lost while training because most
of the times all the videos are concatenated together and the
dataloader iterates on ”one single video” repeatedly. But
in our case, we want to run only a single forward pass to
extract useful information from videos without leaving out
any useful frames while sampling as well as preserve the
atomicity of each video while storing that information in
a distributed database. In this regard, the existing systems
with machine learning support are not capable for designing
large-scale video processing, indexing and retrieval engines.

Problem Statement: In this work, our primary aim is to
design an efficient data mining pipeline for a large collection
of raw, and unlabeled videos. We have used PySpark on
top of PyTorch to distribute the computations across differ-
ent workers in a fault tolerant and consistent manner. The
PySpark library is fairly easy to use as it hides the distribu-
tion process in the backend and it can be integrated with a
number of different frameworks while supporting pythonic
development. We have also used PySpark to integrate Mon-
goDB database server in the same pipeline so that the ex-
tracted tags can be directly pushed to the database. The
proposed system can parallelize the mining process while
maintaining the atomicity of each input and it can leverage
the large amount of GPU clusters that are nowadays, readily
available in many institutions to perform parallel inferences.

Each worker process performs frame sampling to extract
relevant video frames, dense feature extraction using batch-
inference, feature tagging with scores for all the supported
classes for each sampled frame and aggregation of tags



Distributed video processing system using CLIP features

MongoDB

Py
Sp

ar
k

video tags

A 

Videos
Partition 1

Videos
Partition 2

Videos
Partition n

CLIP 
Tagger 

Copy 2

CLIP 
Tagger 

Copy 1

CLIP 
Tagger 

Copy n

Subsampling 
& batching

Subsampling 
& batching

Subsampling 
& batching

B 

C 

D 

E

Figure 1. A high-level overview of our Spark-based parallel video tagger. A. Corpus of YouTube videos. B. Partitions of input videos
(1...n). C. Subsampling videos at 1 FPS followed by batching frames. D. Tagging batched video frames using CLIP. Note that all
instances of the CLIP tagger are identical for different partitions. E. Video tags are pushed to a global remote MongoDB database instance
for further analytics.

across the video for getting high-precision classes. We have
used Decord1 for reading videos and the frame-sampling
step. Decord is one of the most efficient video readers that
support in-memory storage of frames. While most video
readers like PyAv2, OpenCV3, FFmpeg4, and Pytorch’s
VideoReader5 seek each frame sequentially, Decord can ex-
tract any frame by only using the frame index thus making
the sampling process faster without the need for implement-
ing loops and skipping consecutive frames.

Generally machine learning models are required to be
trained on a specific set of classes in a supervised man-
ner for making highly accurate predictions. In order to
support the tagging of video datasets from randomly diverse
sources (social media, YouTube, or streaming platforms),
either multiple machine learning models need to be trained
on different datasets with similar distribution or a single

1https://github.com/dmlc/decord
2https://github.com/PyAV-Org/PyAV
3https://docs.opencv.org/3.4/d8/dfe/

classcv_1_1VideoCapture.html
4https://ffmpeg.org/
5https://pytorch.org/vision/stable/

generated/torchvision.io.VideoReader.html

multi-domain model needs to be trained on a large dataset
to handle the distribution shift in the inputs. Moreover,
we would need annotated data for training the models that
would further increase the cost of building such a system.

However, recently a new class of machine learning models
(CLIP (Radford et al., 2021), DINO (Caron et al., 2021),
LSeg (Li et al., 2022)) have come up that do not require
explicit training on desired problems and are able to support
robust zero-shot predictions using relevant signals. One of
the models is CLIP that uses natural language supervision
to learn visual features. It consists of a text transformer
encoder and an image transformer encoder that joinly learns
their embedding space in order keep the related textual
and visual embeddings closer with respect to the distance
metric while keeping all other negative pairs farther apart.
Furthermore, it was trained on diverse set of classes and
encodes a large set of concepts in its parameters. In order to
make zero-shot predictions we only require a desired class
and hand-engineered textual prompts without training the
model again for the new class. Therefore it is a suitable
model that can be integrated with our pipeline to tag videos
across from domains for a large number of classes. In this
work, we have used classes from the ImageNet (Deng et al.,

https://github.com/dmlc/decord
https://github.com/PyAV-Org/PyAV
https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html
https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html
https://ffmpeg.org/
https://pytorch.org/vision/stable/generated/torchvision.io.VideoReader.html
https://pytorch.org/vision/stable/generated/torchvision.io.VideoReader.html


Distributed video processing system using CLIP features

2009) and Kinectics-700 (Kay et al., 2017) datasets and
available hand engineered prompts from the CLIP’s GitHub
repository 6. The extracted tags for each frame’s features
are aggregated and the top scoring tags are sampled for each
of the datasets. In this work we took 5 highest scoring tags
from ImageNet classes and 5 highest scoring tags from the
Kinetics classes out of all the predicted scores in a single
video for their respective datasets. Note that there can a
same class can occur more than once in the set of top 5
scoring classes from different frames so the final collection
of tags might be less than 10. Even though, we decreased
the diversity of predictions, this ensures high-precision in
our predictions as whatever gets predicted is correct with
high probability.

Finally, the extracted tags list is stored in the MongoDB
database to enable retrieval by querying. The database is
a NoSQL database with horizontal scalability. It is most
suitable for our usecase because of efficient indexing of the
list of tags for each video without introducing sparsity in the
table and due to the backend optimizations of the database,
the query processing and retrieval is also very fast.

2 RELATED WORK

Our work can be categorized under the umbrella of content-
based video retrieval (CBVR) systems. The aim of tradi-
tional CBVR systems is to support representing, model-
ing, indexing, retrieving, browsing or searching information
stored in a multimedia databases (Saoudi & Jai-Andaloussi,
2021). The scope of our work touches upon most of the
above described properties. Recently, there have been ex-
tensive works on CBVR in order to support most flexible
video-content retrieval. However, the existing systems lack
in many aspects. Either, they still use heuristic based fea-
tures of processing videos, or they use complicated frame
sampling procedures involving Grouping of Frames (Saoudi
& Jai-Andaloussi, 2021), fuzzy c-means clustering (Aote
& Potnurwar, 2019), clustering based on color channels
(Das et al., 2018), using moving object detection and Peak
Signal-to-Noise Ratio (Luo et al., 2018) or using spatiotem-
poral slices (Zhang et al., 2016). All these methods require
additional multi-step modules in the pipeline that increases
the computation time in frame sampling with no guarantee
of preserving the useful frames. In contrast, we sampled
frames at 1 Frames per second (FPS) rate for downsampling
while preserving useful frames.

Perhaps the work of (Saoudi & Jai-Andaloussi, 2021) is
closely related to our work in developing a distributed
CBVR system. They use Apache Storm7 as a distributed
real-time computation system which is based on the master-

6https://github.com/openai/CLIP
7https://github.com/apache/storm

slave architecture where the master node assigns tasks to
each of the workers. However, they use computationally
extensive frame sampling using Group of pictures to first
group the closest frames and select only 1 key frame from
the group. This leads to almost 8 different processing steps
at worker nodes. Furthermore, they have only performed
their experiments on very short video clips on Hollywood2
dataset (Wang & Schmid, 2013) which are very short video
clips (less than 1 minute) with 24 FPS rate whereas we use
longer videos with atleast 4-5 mins with 30 FPS rates or
higher.

Other CBVR system is VideoQ (Chang et al., 1998) that sup-
port spatio-temporal queries for retrieving video clips like
basketball players or skiers. However, they implemented a
java-based interactive query interface for specifying multi-
object queries whereas we are using a distributed database
server for the the same. Moreover, the VideoQ system’s
query server contains multiple databases, each for indexing
a single specific feature like color, motion, shape, or tex-
ture. It is clear that they use low-level features and complex
queries to support video retrievals while we use machine
learning models to explicitly store high-level object and
action classes and support simple queries. Other related
work (Ilyas & Rehman, 2019) use a machine learning model
for extracting useful classes from videos but there system
requires explicit training of the models on the supported
classes and it is not scalable while our system can be easily
scaled out across different machines.

Furthermore, most popular machine learning frameworks
like PyTorch also support video reading and frame sam-
pling but they are designed in order to make the training
processing more faster and simpler instead of the inference
process. The VideoReader API8 requires iterating through
every frame in the video whereas, the VideoFramesDataset9

used randomized algorithms to sample a fixed number of
frames for every video. This is not suitable because every
video is of different duration and either we would need to
change the number of sampled frames for every video to
ensure robust frame sampling or if the number of frames is
fixed, then there will be loss of relevant information as the
interval time between the sampled frames will be large in
longer videos.

Our work addresses all of the above mentioned shortcom-
ings in the existing works and at the same time propose
a novel distributed system for state-of-the-art video data
mining. We will now descibe each of the components of
our system in detail along with the results in the following
sections.

8https://pytorch.org/vision/main/auto_
examples/plot_video_api.html

9https://video-dataset-loading-pytorch.
readthedocs.io/en/latest/

https://github.com/openai/CLIP
https://github.com/apache/storm
https://pytorch.org/vision/main/auto_examples/plot_video_api.html
https://pytorch.org/vision/main/auto_examples/plot_video_api.html
https://video-dataset-loading-pytorch.readthedocs.io/en/latest/
https://video-dataset-loading-pytorch.readthedocs.io/en/latest/


Distributed video processing system using CLIP features

Figure 2. A high-level overview of CLIP’s zero-shot tagging pipeline. Given an input image, the image encoder computes the dense visual
features. Similarly, textual prompt features are computed using the text encoder. The predicted class corresponds to the the maximum dot
product scores between the image embedding and the prompt embedding.

3 APPROACH

The overview of our approach is described in Figure 1,
where we have a large corpus of videos (A), and it is parti-
tioned across difference workers using PySpark (B). Each
video is then processed sequentially afterwards where fea-
tures are extracted for the sampled framed (C) using the
CLIP model and those features are tagged in a zero-shot
manner (D). The output for each video is a list of highest
scoring tags. The lists from all the partitions is concatenated
and then pushed to the MongoDB server (E).

For a single GPU system with enough memory, different
workers initiate different copies of the CLIP model on the
GPU. Initially, when the number of workers increases, the
inference time reduces but as the number of workers keeps
increasing the process becomes slow because more workers
compete for limited available resources. For multi-GPU
settings, we can easily extend our approach to host parti-
tions on different GPUs, with each GPU hosting exactly the
number of workers that maximize the throughput on a single
GPU.

Video reader and Frame sampling: We used Decord to
read each video for faster in-memory processing of frames.
Decord is efficient, flexible and it provides convenient video
slicing methods based on a wrapper on top of hardware
accelarated video decoders like FFMPEG/LibAV and Nvidia
Codecs. It does not require decoding videos to frames,
supports frames access using get batch() and frame index
list and it 2x faster than OpenCV VideoCapture and Pyav
Container.

To support frame sampling and frames batching for machine
learning model inference, we used PyTorch’s Dataset
class on top of Decord. Each Dataset instance method

takes a video path as input and extract the video’s FPS,
duration and the total number of frames in each video us-
ing Decord. Using these three quantities, the indices of
the frames after every 1 second interval can be computed
and those frames were then read and stored in-memory in
the class variables. The class’s getitem(i) method will
return the frame at the ith index after applying a transforma-
tion function and making it suitable for the CLIP model’s
input. The combination of Decord and PyTorch’s Dataset
class leveraged the highly optimized APIs from individual
components to maximize our model’s input throughput. We
believe that our subsampling frequency of 1 FPS captures
sufficient temporal context without missing important visual
cues. Furthermore, our subsampling process helps reduce
the input data size, thereby improving inference speed.

3.1 Zero-shot video tagging with CLIP

Figure 2 describes the high-level overview of how zero-shot
predictions can be made using a single textual prompt, a set
of classes and a query image.

Both the image and text transformer encoders of the CLIP
model generate embeddings for a given image and a tex-
tual prompt respectively such that if the text describes
the image, then the embeddings will be closer in embed-
ding space, otherwise they will be distant. Therefore, if
we have an image of a dog, its visual embedding will be
closer to the prompt embedding “This is a photo
of a dog” than the prompt embedding of “This is
a photo of a cat”. We can generalize this to more
classes by replacing the label with the class name in
the prompt— “This is a photo of a {label}”—
and take the class with highest cosine similarity as the zero-
shot prediction.



Distributed video processing system using CLIP features

[bathing dog][riding elephant]

[European green lizard] [lorikeet] [ostrich]

Figure 3. Example tags and their corresponding frames inferred by our system using the CLIP model. Note that tag prediction capability
is not perfect due to object ambiguities which may be hard for even humans to distinguish correctly. Note that the last frame is
incorrectly tagged as [bathing dog] while it is actually a bear. This is because of general limitations of the machine learning
model’s incapability of handling noisy or blurry inputs itself, rather than shortcomings of our pipeline. Video source: https:
//www.youtube.com/watch?v=muczNvx9fgg (video not from MERLOT Reserve dataset)

Since the transformer models can be highly sensitive to dif-
ferent prompts, there are many hand-engineered prompts
that are proposed in the CLIP paper for datasets like Im-
ageNet and Kinectics-700. For calculating the similarity
score between the image and class tag, we append each
class name to all the text prompts and take the average of
the cosine similarity as the final class score for more robust
zero-shot prediction. This is repeated for all the classes. The
highest-scoring class can be taken as the final prediction.

For our video tagging use case, we used the classes and
prompts for two different datasets: ImageNet (80 prompts
and 1,000 classes) and Kinetics-700 (28 prompts and 700
action classes). For each video, we computed the class
scores for every frame, extracted at 1 FPS. To ensure high-
precision tagging, we took the top-5 highest scoring classes
across all the frames for each dataset (ImageNet/Kinetics-
700).

3.2 Storing video tags and querying them using
PySpark SQL

After tagging, we stored the list of video tags in a remote
MongoDB database instance using PySpark SQL for basic
data insertion and querying operations. We chose MongoDB
primarily due to its ability to scale horizontally and also its
support for semi-structured data, such as variable-length
video tag arrays in our case.

4 EXPERIMENTS AND RESULTS

4.1 Data

We used a small portion of the MERLOT Reserve dataset,
which is a large-scale unlabelled dataset of YouTube videos
where each video comes with a high-level category. In total,
we sampled 500 videos due to disk and time constraints.
We present inference time on these 500 videos for different
numbers of partitions on a single GPU.

4.2 Downloading and storing data

We obtained a subset of videos from MERLOT Reserve
(Zellers et al., 2022). Given the size and modality (video)
of our dataset, we can either do this in an online or offline
fashion. By downloading the video on demand, rather than
storing the dataset of videos on disk, we can reduce the
spatial footprint of our system. However, this comes with
the additional overhead of internet latency, which can, in
turn, factor into inference latency. Ideally, if disk space is
not a constraint, it is preferred to download all videos in the
dataset and store them for offline access, which is what we
ended up doing.

4.3 Evaluation

We evaluated the proposed system based on how well it
scales to the size of the dataset and the time it takes to
extract the relevant tags with varying numbers of parallel
processes.

https://www.youtube.com/watch?v=muczNvx9fgg
https://www.youtube.com/watch?v=muczNvx9fgg


Distributed video processing system using CLIP features

[driving car]

[news anchoring]

[car mirror] [changing gear in car]

[driving car] [car mirror]

Video A Video A Video A

Video B Video B Video B

Figure 4. Representative frames from videos retrieved upon running a conditional query. The conditional query, executed through PySpark
SQL, was designed to retrieve videos that contain both “driving car” AND “car mirror”. Note that frame one in Video A and
frame two in Video B both contain “driving car”, while the second and third frames from Video A and Video B respectively both
contain “car mirror”—although it’s slightly out of frame, but nevertheless visible in Video B. Two other top-ranked tags generated by
the system were: “news anchoring” and “changing gear in car”.
Both videos depicted in this figure are from the MERLOT Reserve dataset. Video A source: https://www.youtube.com/watch?
v=QamPzj0Xzek / Video B source: https://www.youtube.com/watch?v=1kvdhlA_BXY

100 200 300 400 500
Number of videos

20

40

60

80

100

In
fe

re
nc

e 
tim

e 
(m

in
ut

es
)

Inference time by varying number of workers and videos
1 worker
2 workers
3 workers
4 workers

Figure 5. Inference time for a subset of videos with different num-
bers of workers. The system with 3 parallel workers has the lowest
inference time.

4.3.1 Scalability study

We ran all the experiments in a Google Colaboratory10 en-
vironment which comes equipped with an NVIDIA Tesla
T4 GPU running CUDA version 11.2. We conducted exper-
iments on 500 videos and reported the results with 1, 2, 3,
and 4 parallel processes respectively. From Figure 5, we
can see that our system is able to scale out as we increase
the number of processes. For a single process, the inference
time increases linearly. Note that for the single GPU setting

10https://colab.research.google.com/

with the specified configurations, we observe the best results
when the number of parallel workers is 3. We believe this
is due to the fact that each separate process creates its own
copy of the CLIP model (all on GPU) which leads to high
stress on single GPU VRAM.

4.3.2 Qualitative retrieval results

Figures 3 and 4 show tags and their corresponding frames
from videos that have been processed using our sys-
tem. Notably, as illustrated in Figure 3, given an ex-
ample video as input, the output of the system is a set
of tags (“European green lizard”, “lorikeet”,
“ostrich”, “riding elephant”, “bathing dog”),
which we have visualized by providing the corresponding
frame from the video. These tags are stored in a database
along with the video ID, allowing us to retrieve arbitrary
videos based on their constituent tags. For instance, you
can retrieve the video depicted in Figure 3 by constructing
a query that returns all videos in the database that contain
say, “lorikeets”. Closer inspection of the last frame of
Figure 3 reveals important nuances of the machine learning
model used for tagging. Particularly, “[bathing dog]”
is an incorrect tag for the last frame, as the frame actually
depicts a bathing bear. Mistakes like these can be due to
video artifacts such as motion blur, making it hard for the
tagging model to crisply and correctly identify frame con-
tent. We briefly touch upon potential ways to alleviate this
in Section 5.1.

https://www.youtube.com/watch?v=QamPzj0Xzek
https://www.youtube.com/watch?v=QamPzj0Xzek
https://www.youtube.com/watch?v=1kvdhlA_BXY
https://colab.research.google.com/


Distributed video processing system using CLIP features

A core component of our video processing system is to
be able to retrieve relevant videos based on a query which
we demonstrate in Figure 4. We used a conditional “AND”
query to retrieve the subset of processed videos that contain
two target tags (“driving car” and “car mirror”).
Upon querying the database with this query, several videos
with the given tags were returned, of which we randomly
selected two videos: Video A (top row) and Video B
(bottom row). Importantly, both videos contain pertinent
frames corresponding to the target tags of our query, show-
ing the effectiveness of retrieval. Other tags that are
not part of the query, but are retrieved by the system in-
clude “[changing gear in car]” for Video A and
“[news anchoring]” for Video B. Without the loss of
generality, we have illustrated conditional querying for only
two predicates, however, it can easily be extended to multi-
ple predicates with different logical conditions.

5 CONCLUSION

We have presented our approach in building a distributed
video processing system that is able to analyze and extract
tags from a large corpus of videos. Although this can be
done sequentially, by analyzing one video after the other, it
is an embarrassingly parallel task that can be achieved in a
distributed manner. Owing to this, we leveraged PySpark to
construct a pipeline that involves initiating multiple parallel
jobs, where each job narrowly focuses on the tagging of
only a subset of videos, after which the tags are stored in
a database for further analysis. Along the way, we present
inference time results as well as a qualitative analysis of the
retrieval capability of our system.

5.1 Future work

For our experiments, we only used a single GPU instance
which places a limit on the number of partitions we can
use due to memory limits. Looking into the future, we can
extend our work by distributing partitions across multiple
devices and multiple GPUs. We believe this dimension
of horizontal scalability will reconcile any performance
inconsistencies depicted in Figure 5.

To improve the ease of use of the system, another direction
of work can be to incorporate a language model to interact
with the video tag database using natural language. For
instance, instead of using a query that requires knowledge
of PySpark SQL, a user can simply construct queries such
as “Retrieve all videos which contain dogs and cats, but not
elephants.”

As alluded to in Section 4.3.2, in order to improve tagging
precision, one avenue of research can involve using an alter-
native machine learning model for tagging. Such a model
can perhaps take the temporal context of sampled frames

into account to improve the quality of tags.

6 TEAM CONTRIBUTIONS

• PyTorch class implementation for inference and tag-
ging: Siddhant Garg and Sridhama Prakhya

• Integrating PyTorch with PySpark to deploy the infer-
ence pipeline: Siddhant Garg

• Integrating inference pipeline with MongoDB using
PySpark SQL for insertion and querying: Sridhama
Prakhya

REFERENCES

Aote, S. S. and Potnurwar, A. An automatic video annota-
tion framework based on two level keyframe extraction
mechanism. Multimedia Tools and Applications, 78(11):
14465–14484, 2019.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 9650–9660, 2021.

Cha, Y.-J., Chen, J. G., and Büyüköztürk, O. Output-only
computer vision based damage detection using phase-
based optical flow and unscented kalman filters. Engi-
neering Structures, 132:300–313, 2017.

Chang, S.-F., Chen, W., and Sundaram, H. Videoq: a fully
automated video retrieval system using motion sketches.
In Proceedings Fourth IEEE Workshop on Applications
of Computer Vision. WACV’98 (Cat. No. 98EX201), pp.
270–271. IEEE, 1998.

Das, S., Banerjee, M., and Chaudhuri, A. An improved
video key-frame extraction algorithm leads to video wa-
termarking. International Journal of Information Tech-
nology, 10(1):21–34, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Ilyas, S. and Rehman, H. U. A deep learning based approach
for precise video tagging. In 2019 15th International
Conference on Emerging Technologies (ICET), pp. 1–6.
IEEE, 2019.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier,
C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.



Distributed video processing system using CLIP features

Li, B., Weinberger, K. Q., Belongie, S., Koltun, V., and
Ranftl, R. Language-driven semantic segmentation. arXiv
preprint arXiv:2201.03546, 2022.

Liu, X., He, G.-F., Peng, S.-J., Cheung, Y.-m., and Tang,
Y. Y. Efficient human motion retrieval via temporal ad-
jacent bag of words and discriminative neighborhood
preserving dictionary learning. IEEE Transactions on
Human-Machine Systems, 47(6):763–776, 2017.

Luo, Y., Zhou, H., Tan, Q., Chen, X., and Yun, M. Key frame
extraction of surveillance video based on moving object
detection and image similarity. Pattern Recognition and
Image Analysis, 28(2):225–231, 2018.

Minaei, S., Kiani, S., Ayyari, M., and Ghasemi-
Varnamkhasti, M. A portable computer-vision-based
expert system for saffron color quality characterization.
Journal of applied research on medicinal and aromatic
plants, 7:124–130, 2017.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on
Machine Learning, pp. 8748–8763. PMLR, 2021.

Saoudi, E. M. and Jai-Andaloussi, S. A distributed content-
based video retrieval system for large datasets. Journal
of Big Data, 8(1):1–26, 2021.

Wang, H. and Schmid, C. Action recognition with improved
trajectories. In Proceedings of the IEEE international
conference on computer vision, pp. 3551–3558, 2013.

Zellers, R., Lu, J., Lu, X., Yu, Y., Zhao, Y., Salehi, M.,
Kusupati, A., Hessel, J., Farhadi, A., and Choi, Y. Mer-
lot reserve: Neural script knowledge through vision and
language and sound. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 16375–16387, 2022.

Zhang, Y., Tao, R., and Wang, Y. Motion-state-adaptive
video summarization via spatiotemporal analysis. IEEE
Transactions on Circuits and Systems for Video Technol-
ogy, 27(6):1340–1352, 2016.

Zhou, Y., Habermann, M., Xu, W., Habibie, I., Theobalt, C.,
and Xu, F. Monocular real-time hand shape and motion
capture using multi-modal data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5346–5355, 2020.


