
IIT KANPUR

UNDERGRADUATE PROJECT

DEPARTMENT OF MATHS AND STATISTICS

Feature Selection using LASSO regression with
Geometric Skew-Normal Distribution

Author:
Siddhant GARG
150711
Department of Maths and Statistics
siddhant@iitk.ac.in

Supervisor:
Prof. Debasis KUNDU

Department of Maths and Statistics
kundu@iitk.ac.in

September 11, 2022

Contents

1 Introduction 2

2 The Lasso Problem 2
2.1 Why does `1 regularization yield sparse solutions . 3
2.2 Co-ordinate Descent Algorithm . 3

3 Elastic Net 5

4 Geometric Skew-Normal Distribution 5
4.1 EM-Algorithm for estimation of parameters . 6
4.2 Data Analysis and Feature Selection . 6

5 Experiments and Results 7
5.1 Dataset : mtcars . 7
5.2 Diabetes Dataset . 8
5.3 Arcene Dataset . 9

6 Future Work and Conclusions 9

A Lawson and Hanson Algorithm for finding Lasso solution 10

B Quadratic Programming 10

C Interior-Point Methods 10
C.1 Optimality Conditions . 11
C.2 Central Path . 12
C.3 Predictor Corrector Method . 12
C.4 Step Length Computation . 13
C.5 Corrector Step . 14
C.6 Implementation . 15

1

Feature Selection using LASSO regression with Geometric
Skew-Normal Distribution

Siddhant Garg
IIT Kanpur

siddhant@iitk.ac.in

Abstract
The ’lasso’ minimizes the residual sum of squares subject to the sum of absolute value of the
coefficients being less that a constant. Because of `1 regularization, it tends to produce some
coefficients that are zero and hence give interpretable models. This report discusses how to model
data with geometric skew-normal distribution when mean of the distribution is zero with the lasso
and the elastic net penalty. We run the model on three different datasets and compare the models with
the standard lasso and elastic net models. We will see that the proposed model produced the similar
results with that of the standard model.

1 Introduction

In statistics and machine learning, lasso (least absolute shrinkage and selection operator) (also Lasso or LASSO) is a
regression analysis method that performs both variable selection and regularization in order to enhance the prediction
accuracy and interpretability of the statistical model it produces. It alters the model fitting process to select only a
subset of the provided covariates for use in the final model rather than using all of them. Ridge regression was the
most popular technique for improving prediction accuracy. Ridge regression improves prediction error by shrinking
large regression coefficients in order to reduce overfitting, but it does not perform covariate selection and therefore
does not help to make the model more interpretable. Lasso is able to achieve both of these goals by forcing the sum of
the absolute value of the regression coefficients to be less than a fixed value, which forces certain coefficients to be
set to zero, effectively choosing a simpler model that does not include those coefficients. This idea is similar to ridge
regression, in which the sum of the squares of the coefficients is forced to be less than a fixed value, though in the case
of ridge regression, this only shrinks the size of the coefficients, it does not set any of them to zero. But lasso has its
limitations [9]. In p > n case, the lasso selects atmost n variables because of the nature of the convex optimzation
problem. Also, if there are variables among which the pairwise correlations are very high, lasso selects only one of
them without caring which is it. In high dimensional dataset, ridge regression dominates lasso regression. Hui and
Hastie proposed a new regularization method called elastic net. Elastic net penalty consists of both `1 and `2 penalty. It
can select group of correlated variables and can also do variable selection and shrinkage.

2 The Lasso Problem

This was first given by Tibshirani [7] in 1996 Suppose we have data (xi, yi), i = 1, . . . , N , where xi = (xi1, . . . , xip)

are predictor variables and yi are responses. We assume that xij are standardized so that s
∑N
i=1 xij/N = 0 and∑N

i=1 x
2
ij/N = 1. Letting β̂ = (β̂1, . . . , β̂p)

T , the lasso estimate (β̂, b̂) is defined by

(β̂, b̂) = arg min
(β,b)

{ N∑
i=1

(
yi − b−

∑
j

βjxij

)2}
subject to

p∑
j=1

|βj | ≤ t (1)

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Here t ≥ 0 is the tuning hyperparameter. Now, for all t, the solution for b is b̂ = ȳ. We can, without the loss of
generality assume that ȳ = 0, and hence can omit b. So, we can also write eq (1) as

β̂ = arg min
β
‖Xβ − y‖2 subject to ‖β‖1 ≤ t (2)

2.1 Why does `1 regularization yield sparse solutions

[6] This section explains why `1 regularization results in sparse solutions, whereas `2 regularization does not.

Figure 1: Illustration of `1 (left) vs `2 (right) regularization of a least squares problem. Fig. courtesy: [6]

In the Figure, we plot the contours of the RSS objective function, as well as the contours of the `1 and `2 constraint
surfaces. From the theory of constrained optimization, we know that the optimal solution occurs at the point where the
lowest level set of the objective function intersects the constraint surface (assuming the constraint is active). It should be
geometrically clear that as we relax the constraint B, we “grow” the `1 “ball” until it meets the objective; the corners of
the ball are more likely to intersect the ellipse than one of the sides, especially in high dimensions, because the corners
“stick out” more. The corners correspond to sparse solutions, which lie on the coordinate axes. By contrast, when we
grow the `2 ball, it can intersect the objective at any point; there are no “corners”, so there is no preference for sparsity.

2.2 Co-ordinate Descent Algorithm

We will give the overview of how the lasso problem is solved. Details can be referred from here [6]. The lasso objective
is given by:

f(β) = RSS(β) + λ ‖β‖1

where RSS(β) = ‖y −Xβ‖2, and λ is the regularization parameter. The objective function is non-smooth function
and hence derivative does not exits at βj = 0. We will use the sub-derivative or sub-gradient of the convex function.
For the absolute function g(x) = |x|, the subderivative is given by:

∂f(x) =

{ {−1} x < 0
[− 1, 1] x = 0
{1} x > 0

}

3

Applying the above concepts to the lasso problem, we get

∂ RSS(β)

∂βj
= ajβj − cj

aj = 2

n∑
i=1

x2
ij

cj = 2

n∑
i=1

xij(yi − βT−jxi,−j)

where β−j is without the component j, and similarly for xi,−j . We see that cj is proportional to the correlation between
the jth feature x:,j and the residual due to other features, r−j = y −X:,−jβ−j . Hence the magnitude of cj is and
indication of how relevant feature j is for predicting y (relative to the other features and the current parameters). The
subderivative of the objective function is given by:

∂βjf(β) = (ajβj − cj) + λ∂βj ‖β‖1

=

{ {ajβj − cj − λ} if βj < 0
[ajβj − cj − λ, ajβj − cj + λ] if βj = 0

{ajβj − cj + λ] if βj} > 0

}

Depending on the value of cj , the solution to ∂βjf(β) = 0 can occur at 3 different values of βj .

Case 1: If cj < λ, then the feature is strongly negatively correlated with the residual, then the subgradient is zero at
wj =

cj+λ
aj

< 0.

Case 2: If cj ∈ [−λ, λ], so the feature is weakly correlated with the residual, then the subgradient is zero at βj = 0.

Case 3: if cj > λ, so the feature is strongly positively correlated with the residual, then the subgradient is zero at
betaj =

cj−λ
aj

> 0.

β̂j(cj) =

{
(cj + λ)/aj if cj < −λ

0 if cj ∈ [λ, λ]
(cj − λ)/aj if cj > λ

}

We can write this as follows:

β̂j = soft
(cj
aj

;
λ

aj

)
where soft(a; δ) = sign(a)(|a| − δ)+, where x+ = max(x, 0). This is called soft-thresholding.

Algorithm 1 Co-ordinate Descent for Lasso

1: Initialize: β = (XTX + λI)−1xTy;
2: repeat
3: for i = 1, . . . , D do
4: aj = 2

∑n
i=1 x

2
ij

5: cj = 2
∑n
i=1 xij(yi − βTxi + βjxij)

6: βj = soft
(
cj
aj
, λaj

)
;

7: until Not converged

When λ = 0, we get the OLS solution. If λ > λmax, we get β̂ = 0, where λmax = maxj
∣∣yTx:,j

∣∣
4

3 Elastic Net

It was first introduced by Hui Zou and Trevor Hastie [9]. Definition: Suppose we have data (xi, yi), i = 1, . . . , N ,
where xi = (xi1, . . . , xip) are predictor variables and yi are responses. We assume that xij are standardized so that
s
∑N
i=1 xij/N = 0 and

∑N
i=1 x

2
ij/N = 1. Letting β̂ = (β̂1, . . . , β̂p)

T , the lasso estimate (β̂, b̂) is defined by

β̂ = arg min
β
‖y −Xβ‖2 + λ{α ‖β‖1 + (1− α) ‖β‖22}

Here, λ ≥ 0 is regularization hyperparameter and 0 < α < 1 is the mixing ratio. The above optimization problem can
be solved with co-ordinate descent algorithm, whose details we are going to omit.

4 Geometric Skew-Normal Distribution

A normal random variable with mean µ and variance σ2 will be denoted byN (µ, σ2). A geometric random variable with
parameter p will be denoted by GE(p), and it has the probability mass function (PMF); p(1− p)n−1, for n = 1, 2,
Now we define GSN distribution with parameters µ, σ and p as follows.

Definition : Suppose N ∼ GE(p), {Xi : i = 1, . . . } are i.i.d. N(µ, σ2) random variables, and N and Xi ’s are
independently distributed. Define

X
d
=

N∑
i=1

Xi

. Then X is said to be GSN random variable with parameters µ, σ and p. It will be denoted as GSN(µ, σ, p). The joint
PDF, fX,N (x, n) of (X, N) is given by

fX,N (x, n) =

{
1

σ
√

2πn
e−

1
2nσ2

(x−nµ)2p(1− p)n−1 0 < p < 1
1

σ
√

2π
e−

1
2σ2

(x−µ)2 p = 1

for −∞ < x <∞, σ > 0 and for any positive integer n. If p 6= 1 the PDF of X becomes,

fX(x) =

∞∑
n=1

fX,N (x, n)

=

∞∑
n=1

1

σ
√

2π
e−

1
2nσ2

(x−nµ)2p(1− p)n−1

Generation from GSN

• Step 1 : Generate from GE(p)

• Step 2 : Generate x from N(mµ,mσ2),and x is the required sample.

Conditional Distributions and Expectations: The following conditional distributions will be required for further
development.

P (N |X = x) =
P (X = x,N = n)

P (X = x)

=
(1− p)n−1e

−1

2σ2n
(x−nµ)2/

√
n∑∞

k=1(1− p)k−1e
−1

2σ2k
(x−kµ)2/

√
k

E[N |X = x] =

∑∞
n=1(1− p)n−1e

−1

2σ2n
(x−nµ)2√n∑∞

k=1(1− p)k−1e
−1

2σ2k
(x−kµ)2/

√
k

E[N−1|X = x] =

∑∞
n=1(1− p)n−1e

−1

2σ2n
(x−nµ)2/n3/2∑∞

k=1(1− p)k−1e
−1

2σ2k
(x−kµ)2/

√
k

5

4.1 EM-Algorithm for estimation of parameters

Suppose we have data {x1, . . . , xn} which is a random sample from GSN(µ, σ, p). We want to estimate the parameters
µ, σ, p. Following the ref , based on the compelete sample {(x1,m1), . . . , (xn,mn)} the psuedo-log likelihood is
given by:

l(µ, σ, p) = −n lnσ − 1

2σ2

n∑
i=1

(xi −miµ)2

mi
+ n ln p+ ln(1− p)

n∑
i=1

(mi − 1)

Based on the complete sample, the MLEs of the unknown parameters can be obtained in explicit forms.

µ̂ =

∑n
i=1 xi∑n
i=1mi

, σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2

mi
, p̂ =

n∑n
i mi

4.2 Data Analysis and Feature Selection

Suppose we have a data sample {(x1, y1), . . . , (xn, yn)}, where xi are the predictors and yi are the responses. We
want to find β such that yi = βTxi + ε, where ε ∼ GSN(µ, σ, p). In this report we will assume µ = 0 for simplicity.
Therefore, we want to estimate β, σ and p. Therefore,

ε ∼ GSN(0, σ, p)

yi − βTxi ∼ GSN(0, σ, p)

zi ∼ GSN(0, σ, p)

where zi = yi − βTxi. Using the EM-Algorithm, we will get the estimates of the parameters σ and p. Based on the
complete sample, the pseudo log-likelihood function is given by:

l(β, σ, p) = −n lnσ − 1

2σ2

n∑
i=1

z2
i

mi
+ n ln p+ ln(1− p)

n∑
i=1

(mi − 1)

= −n lnσ − 1

2σ2

n∑
i=1

(yi − βTxi)2

mi
+ n ln p+ ln(1− p)

n∑
i=1

(mi − 1)

Suppose, we want to select a subset of features that are most relevant to the response variable. For doing the feature
selection problem we will minimize the following objective function:

L(β, σ, p) = −l(β, σ, p) + λ ‖β‖1
Note that the `1 penalty on beta will encourage sparse solutions and only those features will be non-zero that are most
relevant in predicting the response variable. For solving for σ and p, we will differentiate the objective function with
respect to σ2 and p and setting it to zero. Therefore, we get

σ̂2 =
1

n

n∑
i=1

(yi − βTxi)2

mi
p̂ =

n

K
, K =

n∑
i=1

mi

β̂ = arg min
β
−`(β) + ‖β‖1

= arg min
β

1

2σ2

n∑
i=1

(yi − βTxi)2

mi
+ λ ‖β‖1

which can be solved by using co-ordinate descent algorithm. Notea that we have to replace the values of mi and m−1
i

using E[N |X = x] and E[N−1|X = x]. The overall sketch of the EM-Algorithm is as follows:

6

Algorithm 2 EM-Algorithm for parameter estimation and feature selection
.

1: Initialize: (β(0), σ(0), p(0)).
2: repeat for k = 1, 2, . . . ,
3: for i = 1, . . . , n do
4: a

(k)
i = E[N |X = (yi − β(k−1)T xi), σ

(k−1), p(k−1)]

5: b
(k)
i = E[N−1|X = (yi − β(k−1)T xi), σ

(k−1), p(k−1)]

6: Update the parameters.

β(k) = arg min
β

1

2σ2(k−1)

n∑
i=1

(yi − βTxi)2b
(k)
i + λ ‖β‖1

σ2(k)

=
1

n

n∑
i=1

(yi − β(k)T xi)
2b

(k)
i

p(k) =
n∑n

i=1 a
(k)
i

7: until Convergence

The data can also be modelled using the elastic net penalty. The modified loss function is given by:

L(β, σ, p) = −l(β, σ, p) + λ{α ‖β‖1 + (1− α) ‖β‖22}
The EM Algorithm will follow on the same lines except on the step where we update β. The modified update will be

β = arg min
β

1

2σ2

n∑
i=1

(yi − βTxi)2bi + λ{α ‖β‖1 + (1− α) ‖β‖22}

We used Lasso, ElasticNet python packages of sklearn.linear_model [5] to solve both lasso and elastic net optimization
problems.

5 Experiments and Results

We run and tested our model on three different datasets. We present the training error and test error on these datasets
and compare the results of our model with the existing baselines.

5.1 Dataset : mtcars

The dataset contains data extracted from the Motor Trend US magazine, and comprises fuel consumption and 10 aspects
of automobile design and performance for 32 models of car (N = 32, p = 10). There are 32 observation and 10
features, the response variable we want to study is mpg, that is the miles per gallon (or fuel efficiency) [2]. The
explanatory variables are:

• cyl : Number of cylinders

• disp : Displacement (volume of the engine)

• hp : Gross horsepower

• drat : Rear axle ratio

• wt : Weight (1000 lbs)

• qsec : 1/4 mile time

• vs : V/S engine

• am : Transmission (0 = automatic, 1 = manual)11

7

• gear : Number of forward gears

• carb : Number of carburetors

The goal of our analysis is to underline which explanatory variables are most relevant to predict the response variable,
mpg, and in order to do so we will use the LASSO method and the proposed Lasso-GSN and ENET-GSN methods.

For implementation of the Lasso objective sklearn.linear_model [5] will be used. The lasso objective that is used is

L(w) =
1

2N
‖y −Xw‖22 + α ‖w‖1

where α is a tuning hyperparameter. In the figure below, two values of α are indicated with vertical lines. One is
selected by Cross-Validation. Both these values are similar and selects 3 most important features for the model, namely,
wt, cyl and hp.

(a) Lasso (b) Lasso GSN (c) Enet GSN

Figure 2: Plots of α vs features

- Lasso E-Net Lasso-GSN Enet-GSN
MSEs 409.50 410.155 409.668 409.418

#Non-Zero Coef 5 5 4 8

Table 1: Mean-Square-Errors after estimating β by through different models

5.2 Diabetes Dataset

This was first used in LARS paper [1]. This dataset consist of observations on 442 patients, with the response of interest
being a quantitative measure of disease progression one year after baseline. There are ten baseline variables - age, sex,
body-mass index, average blood pressure, and six blood serum measurements-plus quadratic terms, giving a total of 10
features.

8

(a) Lasso (b) Lasso GSN (c) Enet GSN

Figure 3: Plots of α vs features

- Lasso E-Net Lasso-GSN Enet-GSN
MSEs 3019.47 2992.083 2988.837 3005.352

Test-error 2807.944 2808.003 2781.205 2758.712
#Non-Zero Coef 6 10 6 10

Table 2: Mean-Square-Errors after estimating β by through different models

5.3 Arcene Dataset

This dataset was used for feature selection challenge [3] ARCENE’s task is to distinguish cancer versus normal
patterns from mass-spectrometric data. This is a two-class classification problem with continuous input variables. This
dataset is one of 5 datasets of the NIPS 2003 feature selection challenge. ARCENE was obtained by merging three
mass-spectrometry datasets to obtain enough training and test data for a benchmark. The original features indicate the
abundance of proteins in human sera having a given mass value. Based on those features one must separate cancer
patients from healthy patients. We added a number of distractor feature called ’probes’ having no predictive power. The
order of the features and patterns were randomized. The dataset consists of n = 100 samples and p = 10, 000 features
for each sample.

- Lasso E-Net Lasso-GSN Enet-GSN
MSEs 0.215629 0.237298 0.014400 0.014400

Test-error 0.829951 0.803237 0.670685 0.692613
#Non-Zero Coef 45 74 437 572

Table 3: Mean-Square-Errors after estimating β by through different models

6 Future Work and Conclusions

We implemented and compared the proposed models with the existing baselines and we see that for some dataset,
the model performs similar to the baselines in terms of selecting the features and training and testing errors like in
mtcars dataset. In Arcene dataset, however, the proposed model selects far more number of parameters than that of
existing baselines and giving significantly less training and training and testing error respectively. So our proposed
model outperforms the existing baselines on this dataset.

In this project we only considered the modelling of the data with the GSN distribution with zero mean. We can also try
to model the data for the more general case when the mean µ is not zero. Note that the resulting problem will change
significantly for the step where we have to estimate the regression parameters β. The resulting problem will be:

β = arg min
β

1

2σ2

n∑
i=1

(yi − βTxi − aiµ)2bi + λ ‖β‖1 + (1− λ) ‖β‖22

9

Note that the above problem is not the ordinary least squares problem because we will have both square and linear
terms for the residual and cannot be solved the way that was done here.

Appendix

A Lawson and Hanson Algorithm for finding Lasso solution

We fix t ≥ 0. Problem (2) can be expressed as a least squares problem with 2p inequality constraints. Lawson and
Hanson (1974) provided a procedure for solving the general linear inequality constraints Gβ ≤ h. G is m× p matrix of
m linear inequalities. Our problem can be solved by introducing the inequalities sequentially and obtaining the feasible
solutions, satisfying the KKT conditions.

Let g(β) =
∑N
i=1(yi −

∑
j βjx

2
ij) and let δi, i = 1, . . . , 2p, be the p − tuples of form (±1, . . . ,±1)p. Then the

condition
∑
j |βj | ≤ t is equivalent to δTi β ≤ t for all i. For a given β, let E = {i : δTβ = t} and S = {i : δTβ < t}.

Denote GE matrix whose rows are δi for i ∈ E. Let 1 be the vector of ones whose length is number of rows of GE .

Algorithm 3 Lawson and Hanson Method

1: g(β) =
∑N
i=1(yi −

∑
j βjx

2
ij)

2: Initialize : E = {i0}, where δi0 = sign(β̂0), β̂0 : Least squares estimate
3: Find β̂ = arg minβ g(β) subject to GEβ ≤ t1.
4: while

∑
j |βj | > t do

5: add i to the set E, where δi = sign(β̂)

6: Find β̂ = arg minβ g(β) subject to GEβ ≤ t1

The step 3 and 6 of the above algorithm are quadratic programming problems. These type of problems can be solved
using Active Set Method and Interior Point Methods. Following section will describe the quadratic programming and
interior point method more formally.

B Quadratic Programming

Quadratic programming (QP) is the process of solving a special type of mathematical optimization problem, specifically,
a quadratic optimization problem, that is, the problem of optimizing (minimizing or maximizing) a quadratic function
of several variables subject to linear constraints on these variables. General form of QP is given by

min
x∈Rn

1

2
xTQx+ qTx subject to

Ax = a

Bx ≤ b
where Q ∈ Rn×n symmetric matrix (not necessarily positive definite matrix) and A ∈ Rm1×n and B ∈ Rm2×n and
m1 ≤ n.

C Interior-Point Methods

[8] [4] The primal–dual interior-point approach can be applied to convex quadratic programs through a simple extension
of the linear-programming algorithms. One characteristic of these methods was that they required all iterates to satisfy
the inequality constraints in the problem strictly, so they soon became known as interior-point methods. We will discuss
the primal-dual interior-point method for solving the inequality constrained convex quadratic program

min
x∈Rn

f(x) :=
1

2
xTGx+ gTx subject to (3)

10

ATx ≥ b
x is an n× 1 vector where n is the number of variables, G is a n× n matrix, g is a n× 1 vector, A is a n×m matrix,
where m is the number of inequality constraints, and b is a m× 1 vector.

C.1 Optimality Conditions

In this section we state the optimality (KKT) conditions for the inequality constrained QP and show how to use Newton’s
method to progress iteratively towards the solution. The corresponding Lagrangian for the eq (3) is :

L(x, λ) =
1

2
xTGx+ gTx−

m∑
i=1

λi(a
T
i x− b)

where λ = (λ1, . . . , λm) are the langrange multipliers for each of the ith inequality constraint and aTi is the ith row in
AT and bi is the ith element in b. The optimality conditions are:

∇xL(x, λ) = 0 =⇒ Gx+ g − λA = 0

ATx− b ≥ 0

λi(A
Tx− b)i = 0

λi ≥ 0

The above conditions are rewritten by introducing a slack vector s = ATx− b, s ≥ 0 to simplify the notation.

Gx+ g − λA = 0 (4a)

s−ATx+ b = 0 (4b)
siλi = 0 (4c)

(λi, s) ≥ 0 (4d)

We now define the function F (x, λ, s) such that the roots of this function are solutions to the first three optimality
conditions above.

F (x, λ, s) =

Gx−Aλ− gs−ATx+ b
SΛe


S = diag(s1, . . . , sm),Λ = diag(λ1, . . . , λm) and e = (1, . . . , 1)m. Because we consider convex problems we know
thatG is positive semi-definite and furthermore that the constraints are affine which means that the optimality conditions
stated above are both necessary and sufficient. Additionally the solution vector will be a global minimizer.

Primal–dual methods find solutions (x∗, λ∗, s∗) of this system by applying variants of Newton’s method to the three
equalities above and modifying the search directions and step lengths so that the inequalities (λ, s) ≥ 0 are satisfied
strictly at every iteration. By applying Newton’s method to F (x, λ, s) = 0 we obtain a search direction from the current
iterate (xk, λk, sk), as shown below where J(x, λ, s) is the Jacobian of F (x, λ, s).

J(x, λ, s)

[
∆x
∆λ
∆s

]
= −F (x, λ, s)

Newton’s method forms a linear model for F around the current point and obtains the search direction (x,∆λ,∆s) by
solving the above system. Writing out the Jacobian we obtain the following system of equations shown below: G −A 0

−AT 0 I
0 S Λ

[∆x
∆λ
∆s

]
=

[
0
0

−SΛe

]
(5)

If we solve this system iteratively we should reach the optimal point. In practice however this raw approach is not used
because a full Newton step will generally be infeasible, because it will violate the bound (λ, s) ≥ 0. Instead a line
search is performed along the Newton direction and we find the new iterate as:

(xk+1, λk+1, sk+1) = (xk, λk, sk) + α(∆x,∆λ,∆s)

11

for some line search parameter α ∈ [0, 1). Unfortunately, we often can take only a small step along the direction
(α << 1) before violating the condition (λ, s) > 0, hence, the pure Newton direction, which is known as the affine
scaling direction, often does not allow us to make much progress toward a solution.

The primal-dual methods modify the basic Newton procedure in two important ways:

1. They bias the search direction toward the interior of the non-negative orthant (λ, s) ≥ 0, so that we can move
further along the direction before one of the components of (λ, s) becomes negative.

2. They keep the components of(λ, s) from moving “too close” to the boundary of the non-negative orthant.

C.2 Central Path

The central path is defined as

F (x, λ, s) =

[
0
0
τe

]
(6)

It is an arc (curve) of strictly feasible points that is parametrized by a scalar τ > 0. We note that points on the central
path are strictly feasible and that rd = 0 and rp = 0 for these points. The idea is to have the iterates (xk, λk, sk)
progress along this central path and to have τ decrease with each step. As τ approaches zero, the equations (6) will
approximate the previously defined optimality conditions better and better. This means that the central path follows a
path to the solution such that (λ, s) > 0 and such that the pairwise products siλi are decreased to zero at the same rate.
The purpose of using this concept is that we expect to obtain the fastest rate of convergence by having the iterates follow
(approximate) the central path. From (6) we also see that the points on the central path satisfy a slightly perturbed
version of the optimality conditions, with the only difference, compared to the optimality conditions, being the term τe
on the right hand side. We can define the central path as

C = {(xτ , λτ , sτ)|τ > 0}
Primal–dual algorithms take Newton steps toward points on C for which τ > 0, rather than pure Newton steps for F .
Since these steps are biased toward the interior of the non-negative orthant defined by (λ, s) ≥ 0, it usually is possible
to take longer steps along them than along the pure Newton steps for F , before violating the positivity condition.

To describe the biased search direction, we introduce a centering parameter σ ∈ [0, 1] and a duality measure µ defined
by

µ =
1

n

m∑
i=1

λisi =
xT s

m

which measures the average value of the pairwise products xisi. By writing τ = σµ and applying Newton’s method to
the system (6), we obtain  G −A 0

−AT 0 I
0 S Λ

[∆x
∆λ
∆s

]
=

[
0
0

−SΛe + σµe

]
(7)

The step (∆x,∆λ,∆s) is a Newton step towards the point (xσµ, λσµ, sσµ) ∈ C, at which the pairwise products xisi
are all equal to σµ. In contrast, the step (5) aims directly for the point at which the KKT conditions (6) are satisfied. If
σ = 1, the equations (7) define a centering direction ,a Newton step towards the point (xmu, λmu, smu) ∈ C, at which
all the pairwise products xisi are identical to µ. Centering directions are usually biased strongly toward the interior of
the non-negative orthant and make little, if any, progress in reducing the duality measure µ. However, by moving closer
to C, they set the scene for substantial progress on the next iteration. (Since the next iteration starts near C, it will be
able to take a relatively long step without leaving the non-negative orthant.) At the other extreme, the value σ = 0 gives
the standard Newton step (5), sometimes known as the affine-scaling direction.

C.3 Predictor Corrector Method

In practice the predictor-corrector method proposed by Mehrotra is used. As indicated by the name there is both a
predictor and a corrector step involved in the algorithm. In order to explain the purpose of each of these steps it is
necessary to explain a few concepts first, including that of the central path.The basic idea is to solve the system eq(5)
and then set up a second system of equations to correct this step by modifying the right hand side of eq(5).

12

So far we have assumed that the initial iterates (x0, λ0, s0) are strictly feasible and satisfies all the equalities of eq(4).
All subsequent iterates also respect these constraints, because of the zero right-hand-side terms in system (5). For most
problems, however, a strictly feasible starting point is difficult to find. Infeasible-interior-point methods require only
that the components of x0 and s0 be strictly positive. The search direction needs to be modified so that it improves
feasibility as well as centrality at each iteration, but this requirement entails only a slight change to the step equation (5).
If we define the residuals for the linear equations as

rd = Gx−Aλ+ g

rp = s−ATx+ b

rsλ = SΛe

the modified step equations is :  G −A 0
−AT 0 I

0 S Λ

[∆x
∆λ
∆s

]
=

[−rd
−rs

−rsλ + σµe

]
(8)

The search direction is still a Newton step toward the point (xσµ, λσµ, sσµ) ∈ C.It tries to correct all the infeasibility in
the equality constraints in a single step. If a full step is taken at any iteration (that is, αk = 1 for some k), the residuals
become zero, and all subsequent iterates remain strictly feasible.

Predictor Step : In practice we start by solving the system (11), obtaining the so-called affine scaling direction
(∆xaff ,∆λaff ,∆saff) and then determine a step length αaff for this step. Note that we will use aff in superscript to
mark various vectors and scalars associated with the computation of the affine scaling direction. G −A 0

−AT 0 I
0 S Λ

∆xaff

∆λaff

∆saff

 =

[−rd
−rs
−rsλ

]
(9)

Next the complementarity measure for the current iterate is computed along with a predicted complementarity measure
µaff for the computed Newton step is:

µaff =
(s+ αaff∆saff)T (λ+ αaff∆λaff)

m

By comparing the values of µ and µaff we determine if the computed affine scaling direction is a good search direction.
If for example µaff << µ we have a significant reduction in the complementarity measure and the search direction is
good so little centering is needed. In practice the centering parameter σ is computed as:

σ =

(
µaff

µ

)3

C.4 Step Length Computation

After computing a search direction for the predictor step, and later on the corrector step, we need to decide how long a
step we can take in the computed search direction so that we do not violate (λ, s) > 0. We will take the same approach
of choosing the step length for each predictor and corrector step. In every iteration (λ, s) > 0, so,

λ+ αaff∆λaff ≥ 0

s+ αaff∆saff ≥ 0

We will look at these equations seperately and for convenience use two seperate scaling parameters, αaffλ and and αaffs ,
such that αaff = min(αaffλ , αaffs).

For each of the equations there are three cases based on the sign of ∆λaff and ∆saff respectively.

∆λaff > 0 =⇒ αaffλ = 1

∆λaff = 0 =⇒ αaffλ = 1

13

∆λaffi < 0 =⇒ λi + αaffλ ∆λi = 0 =⇒ αaffλ = − λi
∆λi

From the above cases we see that αaffλ can be chosen as:

αaffλ = min
i:∆λ<0

(
1,− λi

∆λaffi

)
(10)

αaffs can be equivalently chosen as

αaffs = min
i:∆si<0

(
1,− si

∆saffi

)
(11)

Then αaff can be chosen as:

αaff = min(αaffs , αaffλ) (12)

The described approach for determining a step length for the predictor step is also employed to determine a step length
α for the corrector step.

C.5 Corrector Step

First step of the algorithm solves the following system: G −A 0
−AT 0 I

0 S Λ

 aff

∆λaff

∆saff

 =

[−rd
−rs
−rsλ

]
(13)

Above system yields:

(si + ∆saffi)(λi + ∆λaffi) = ∆saffi ∆λaffi 6= 0

Therefore, we introduced a linearization error in affine scaling direction. To compensate for this error we use a corrector
step and solve the system  G −A 0

−AT 0 I
0 S Λ

[∆xcor

∆λcor

∆scor

]
=

 −rd
−rs

−rsλ + ∆Saff∆Λaffe

 (14)

where ∆Saff = diag(∆saff1 , . . . ,∆saffm) and ∆Λaff = diag(∆λaff1 , . . . ,∆λaffm) So to summarize we obtain an
affine scaling direction by solving the system (??). This predictor step is used to compute the centering parameter and
to define the right hand side for the corrector and centering step. The system we solve in practice to obtain the search
direction contains both the centering and corrector contributions as : G −A 0

−AT 0 I
0 S Λ

[∆xcor

∆λcor

∆scor

]
=

 −rd
−rs

−rsλ + ∆Saff∆Λaffe− σµe

 (15)

14

Algorithm 4 Predictor Corrector Method

1: Input : (x0, λ0, s0) and G,A, g, b
2: Compute the residuals and the complemetarity measure

rd = Gx0 − g −Aλ0

rp = s0 −ATx0 + b

rsλ = S0Λ0e

µ =
sT0 λ0

m

3: while Stopping criteria are not satisfied do Predictor Step :
4: Obtain affine scaling direction (∆xaff ,∆λaff ,∆saff) by solving G −A 0

−AT 0 I
0 S Λ

∆xaff

∆λaff

∆saff

 =

[−rd
−rs
−rsλ

]

5: Compute αaff using (12), (13), (14)
6: Compute µaff

µaff =
(s+ αaff∆s)T (λ+ αaff∆λ)

m
7: Compute centering parameter σ

σ =

(
µaff

µ

)3

Corrector and centering step :
8: Obtain the search direction by solving G −A 0

−AT 0 I
0 S Λ

[∆xcor

∆λcor

∆scor

]
=

 −rd
−rs

−rsλ + ∆Saff∆Λaffe− σµe


9: Compute α using (12), (13), (14)

λ+ α∆λcor ≥ 0

s+ α∆scor ≥ 0

10: Update (x, λ, s)
11: Update residuals and complementarity measure

rd = Gx− g −Aλ
rp = s−ATx+ b

rsλ = SΛe

µ =
sTλ

m

C.6 Implementation

In this section a practical way of solving eq() is discussed. G −A 0
−AT 0 I

0 S Λ

[∆x
∆λ
∆s

]
=

[−rd
−rs
−rsλ

]
(16)

15

We will separately solve the three equations a use back substitution to solve the other two. From the second block we
have

∆s = −rp +ATx (17)
From the third block coupled with the (18), we have

∆λ = −S−1(rsλ + Λ∆s)

= S−1(−rsλ + Λrp)− S−1ΛAT∆x
(18)

Combining first block with (20) gives

−rd = G∆x−A∆λ

= (G+AS−1ΛAT)∆x−AS−1(−rsλ + Λrp)

−rd = Ḡ∆x+ r̄

(19)

where

Ḡ = G+ (AS−1Λ)AT

= G+ADAT

r̄ = A(S−1(rsΛ − Λrp))

We can therefore first solve for ∆x from
Ḡ∆x = −ḡ = −(rd + r) (20)

and then use back substitution to solve ∆λ and ∆s. In practice Cholesky Factorization is used for Ḡ to solve (20)

G = LLT

L is lower traingular matrix. We solve two below equations.

LT∆x = Y

LY = ḡ

It is important to note that we only have to perform the computationally expensive factorization of the matrix once per
iteration because the matrix Ḡ does not change during a single iteration.

In practice we do not take a full step but use a scaling parameter η to dampen the step to ensure convergence

(xk+1, λk+1, sk+1) = (xk, λk, sk) + ηα(∆x,∆λ,∆s)

Here η = 0.95 is a good choice.

Algorithm 1 requires us to solve the least squares constrained problem.

β̂ = arg min
β
‖Xβ − y‖2

= arg min
β

(Xβ − y)T (Xβ − y)

= arg min
β

{
βT (XTX)β − 2(XTy)T

}
subject to GEβ ≤ t1

Here GE is same as in step 3 and 6 of algorithm 1 Neccessary changes can be made in Algorithm 2 to solve the above
problem and obtain the desired solution.

References

[1] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression. The Annals of
statistics, 32(2):407–499, 2004.

[2] Valeria Fonti. Feature selection using lasso. 2007.

16

[3] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003 feature selection
challenge. In Advances in neural information processing systems, pages 545–552, 2005.

[4] Thomas Reslow Kruth. Interior-point algorithms for quadratic programming, 2008.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[6] Christian Robert. Machine learning, a probabilistic perspective, 2014.

[7] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), pages 267–288, 1996.

[8] Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-68):7, 1999.

[9] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

17

	Introduction
	The Lasso Problem
	Why does 1 regularization yield sparse solutions
	Co-ordinate Descent Algorithm

	Elastic Net
	Geometric Skew-Normal Distribution
	EM-Algorithm for estimation of parameters
	Data Analysis and Feature Selection

	Experiments and Results
	Dataset : mtcars
	Diabetes Dataset
	Arcene Dataset

	Future Work and Conclusions
	Lawson and Hanson Algorithm for finding Lasso solution
	Quadratic Programming
	Interior-Point Methods
	Optimality Conditions
	Central Path
	Predictor Corrector Method
	Step Length Computation
	Corrector Step
	Implementation

