SeRP: <u>Self Supervised Representation</u> Learning Using <u>Perturbed Point Clouds</u>

Siddhant Garg | Mudit Chaudhary

COMPSCI 674: Intelligent Visual Computing Final Project Presentation

University of Massachusett Amherst

Content

- Motivation and Introduction
- Related Works
- Methodology
 - Point Cloud Perturbation
 - SeRP-PointNet
 - SeRP-Transformer
 - VASP-Transformer
- Experiments and Results
- Conclusion and Future Work

Motivation

- 3D models are trained from scratch unlike 2D vision models that are pre-trained on ImageNet.
- 2. Annotating 3D data is time consuming.
- Lots of 3D data available in the form on raw points clouds.
- 4. Self-Driving Cars, Robotics
 - a. SSL can help in learning world-knowledge
 - Large annotated datasets, or sensors may cause redundancies. (Supervised methods may not be scalable.)

Sensor data from KITTI-360 dataset

Introduction

SeRP framework works as follows:

- 1. Perturbation: Point cloud patches are perturbed using Gaussian noise.
- 2. Autoencoder:
 - a. Encoder: Encodes the latent representation of the point cloud
 - b. Decoder: Reconstructs the original point cloud using the latent representations.
- 3. **Representations:** Encoder representations are used for downstream tasks.

Embeddings Embeddings

Yu et al. 2021: Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling Y. Pang et al 2022. Point-MAE: Masked Autoencoders for Point Cloud Self-Supervised Learning

University of Massachusetts Amherst BEREVOLUTIONARY

Methodology

Point Cloud Perturbation

- 1. Randomly sample 20 points
- 2. Apply KNN to find 20 nearest points
- 3. Sample Gaussian noise with mean 0 and standard deviation of 0.03 for each group
- 4. Add the sampled gaussian noise to each of the groups

University of Massachusetts Amherst BE REVOLUTIONARY

SeRP-PointNet

University of Massachusetts Amherst

SeRP-PointNet

SeRP-PointNet modifies the existing PointNet architecture as shown below.

It performs self-supervision using two tasks:

- 1. Classification: Classifies whether the point is perturbed or not
- 2. Reconstruction: Reconstructs the perturbed point to its original position

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

SeRP-PointNet

For classification, we use a fully-connected layer (n, 2) as the classification head and use cross-entropy loss. For reconstruction, we employ a fully-connected layer (n, 3) as the reconstruction head.

For reconstruction, we provide two methods:

- δ-learning: The reconstruction head predicts δ, i.e. the 3-coordinate differences between the ground truth point cloud and the perturbed point cloud. To calculate the loss, we use a Mean Squared Loss function.
- 2. CDL2 -learning: The reconstruction head predicts the 3-d coordinates directly from the per-point features. For this method, we use Chamfer Distance L2 loss shown below.

$$\mathcal{L}(P, \hat{P}) = \frac{1}{|\hat{P}|} \sum_{x \in \hat{P}} \min_{y \in P} \|x - y\|_2^2 + \frac{1}{|P|} \sum_{x \in P} \min_{y \in \hat{P}} \|x - y\|_2^2$$

SeRP-Transformer

University of Massachusetts Amherst

SeRP-Transformer

Transformers: Vaswani et al.2017 - Attention Is All You Need

SeRP-Transformer Learning Objective

• Reconstruction Loss: Chamfer L2 Loss function

$$\mathcal{L}(P,\hat{P}) = \frac{1}{|\hat{P}|} \sum_{x \in \hat{P}} \min_{y \in P} \|x - y\|_2^2 + \frac{1}{|P|} \sum_{x \in P} \min_{y \in \hat{P}} \|x - y\|_2^2$$

Vector Quantization

VASP: <u>Vector-Quantized Autoencoder for Self-Supervised</u> Representation Learning for <u>Point Clouds</u>

VQ-VAE: Neural Discrete Representation Learning

Vector-Quantization Objectives

$$\mathcal{L}_{VQ} = \log p(x|z_q(x)) + \alpha \|\mathbf{sg}[z_e(x)] - e\|_2^2 + \beta \|z_e(x) - \mathbf{sg}[e]\|_2^2$$

• Reconstruction Loss:
$$\mathcal{L}(P, \hat{P}) = \frac{1}{|\hat{P}|} \sum_{x \in \hat{P}} \min_{y \in P} \|x - y\|_2^2 + \frac{1}{|P|} \sum_{x \in P} \min_{y \in \hat{P}} \|x - y\|_2^2$$

 $||sg[z_e(x)] - e||_2^2 \longrightarrow$ Move embeddings to encoder output. **Embedding Loss:**

Commitment Loss:

$$||z_e(x) - \mathrm{sg}[e]||_2^2 -$$

To commit the encoder output to an embedding and limit its output space.

-1

sg: stop-gradient

Experiments and Results

University of Massachusetts Amherst

Experiments – Overview

We perform two sets of experiments:

- 1. **Pre-training:** We pre-train our autoencoders on ShapeNet55 dataset.
 - a. We sample and perturb 1024 points from each point cloud with gaussian noise (0.0, 0.03).
 - b. We use AdamW optimizer with initial learning rate 0.001 with cosine annealing and batch size 128.
 - c. SeRP-Transformer is trained for 300 epochs while SeRP-PointNet is trained for 100 epochs.
- 2. Downstream Evaluation: We use the pre-trained encoders and finetune it on ModelNet40 classification task to evaluate the performance gain from pre-training.

Experiments – ShapeNet Pre-training

Experiments – ShapeNet Pre-training

Results – Example Reconstructions

University of Massachusetts Amherst BEREVOLUTIONARY

Results – Downstream Evaluation

Dataset	ModelNet40		ShapeNet	
Model	Accuracy	Gain	Accuracy	Gain
Scratch	88.48	-	87.43	-
SeRP-Net	89.1	0.62 ↑	87.97	0.54 ↑
VASP	87.85	-0.63 🗸	86.54	-0.89 \downarrow

 Table 1: Downstream evaluation results using SeRP-Transformer

Dataset	ModelNet40		ShapeNet	
Model	Accuracy	Gain	Accuracy	Gain
Scratch	82.97		84.24	-
δ learn	84.1	1.13 ↑	84.43	0.19 ↑
$cd\ell_2$ learn	84.06	1.09 ↑	84.39	0.15 ↑

 Table 2: Downstream evaluation results using SeRP-PointNet

Conclusion

- 1. We presented a self-supervised learning paradigm to learn latent representations of point cloud data.
- Pre-trained models performed better on the downstream tasks in-comparison to the models trained from scratch noticing a 0.5-1% performance gain on ModelNet40 and ShapeNet55 classification tasks.

Future Works

- Propose a more challenging strategy to perturb point clouds by sampling centers using Far Point Sampling (FPS).
- 2. Compare the existing approach with traditional variational inference and discrete variational inference methods.

a sura su para su para

University of Massachusetts Amherst BE REVOLUTIONARY