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Abstract

This report presents the various concepts and implementation used in Bayesian
analysis. It first introduces the basic Bayesian procedures to obtain posterior
distribution of the parameters, given the data and the priors using the Bayes
theorem and then obtain their Bayes estimates using different loss functions. Bayes
estimates can be difficult to compute analytically in case of high dimensional
data. So, we also talk about more efficient methods to obtain the estimates of
the posterior distribution like EM-Algorithm, Monte Carlo Sampling, Metropolis
Hastings Algorithm and Gibbs Sampling. This report also contains a section on
Hypothesis Testing and model selection, which includes about Bayes factors, BIC,
P-value, Bayesian Outlier Detection. To give an illustration, we also include a
statistical inference on one-dimensional, 3-parameter Geometric Skew Normal
Distribution. It is difficult to obtain the Bayes estimates from the GSN distribution
analytically, so we use Metropolis-Hastings Algorithm to sample and obtain the
Bayes estimates. Further, we present the results and conclusions.

1 Bayesian Procedures [4]

1.1 Prior and Posterior Distributions

Consider a random variable X that has a distribution of probability that depends upon the symbol θ,
where θ is an element of a well-defined set Ω. Let us now introduce a random variable Θ that has
a distribution of probability over the set Ω. We now look upon θ as a possible value of the random
variable Θ.

X|Θ ∼ f(x|θ)

Θ ∼ h(θ)

The pdf h(θ) is called the prior pdf of θ. Moreover, we now denote the pdf of X by f(x|θ) since we
think of it as a conditional pdf of X , given Θ = θ.

Suppose that X1, . . . , Xn is a random sample from the conditional distribution of X given Θ = θ
with pdf f(x|θ). Thus we can write the joint conditional pdf of X, given Θ = θ, as

L(x|θ) = f(x1|θ)f(x2|θ) . . . f(xn|θ)

Thus the joint pdf of X and Θ is

g(x, θ) = L(x|θ)h(θ)

If Θ is a random variable of the continuous type, the joint marginal pdf of X is given by

g1(x) =

∫ ∞
−∞

g(x, θ)dθ

The conditional pdf of Θ, given the sample X, is

k(θ|x) =
g(x, θ)
g1(x)

=
L(x|θ)h(θ)

g1(x)

The above pdf is called posterior pdf. The prior distribution reflects the subjective belief of Θ before
the sample is drawn, while the posterior distribution is the conditional distribution of Θ after the
sample is drawn.
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1.2 Bayesian Point Estimation

Suppose we want a point estimator of θ. From the Bayesian viewpoint, this really amounts to selecting
a decision function δ, so that δ(x) is a predicted value of θ when both the computed value x and the
conditional pdf k(θ|x) are known.

The choice of the decision function should depend upon a loss function L[θ, δ(x)]. A Bayes estimate
is a decision function δ that minimizes

E{L[θ, δ(x)]|X = x} =

∫ ∞
−∞

L[θ, δ(x)]k(θ|x)dθ

If Θ is a random variable of the continuous type. That is,

δ(X) = Argmin

∫ ∞
−∞

L[θ, δ(x)]k(θ|x)dθ

If L[θ, δ(x)] = [θ − δ(x)]2, then δ(x) = E(Θ|x)

If L[θ, δ(x)] = |θ − δ(x)|, then median of the conditional distribution of Θ given X = x is the Bayes
Solution.

1.3 Bayesian Interval Estimation

1.3.1 Confidence Interval

Theorem 1.1 (Central Limit Theorem) Let X1, . . . , Xn denote the observations of a random sam-
ple from a distribution that has mean µ and finite variance σ2. Then the distribution function of
the random variable Wn = (X̄ − µ)/(σ/n) converges to Φ, the distribution function of the N(0, 1)
distribution, as n→∞.

Large Sample Confidence Interval for mean µ

Suppose X1, . . . , Xn is a random sample on a random variable X with mean µ and variance σ2.

Zn =
X̄ − µ
S/
√
n

Distribution of Zn is approximately N(0, 1).

Let α be such that α/2 = P (Zn > zα/2).

1− α ≈ P
(
− zα/2 < Zn < zα/2

)
1− α ≈ P

(
X̄ − zα/2

S√
n
< Zn < X̄ + zα/2

S√
n

)
Again, letting x̄ and s denote the realized values of the statistics X̄ and S, respectively, after the
sample is drawn, an approximate (1− α)100% confidence interval for µ is given by,

(x̄− zα/2s
√
n, x̄+ zα/2s

√
n)

This is called a large sample confidence interval for µ.

If an interval estimate of θ is desired, we can find two functions u(x) and v(x) so that the conditional
probability

P [u(x) < Θ < v(x)|X = x] =

∫ v(x)

u(x)

k(θ|x)
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These intervals are often called credible or probability intervals, so as not to confuse them with
confidence intervals.

2 Bayesian Computations [1]

Bayesian analysis requires computation of expectations and quantiles of probability distributions
that arise as posterior distributions. Modes of the densities of such distributions are also sometimes
used. The standard Bayes estimate is the posterior mean, which is also the Bayes rule under the
squared error loss. Its accuracy is assessed using the posterior variance, which is again an expected
value. Posterior median is sometimes utilized, and to provide Bayesian credible regions, quantiles of
posterior distributions are needed. If conjugate priors are not used, as is mostly the case these days,
posterior distributions will not be standard distributions and hence the required Bayesian quantities
(i.e., posterior quantities of inferential interest) cannot be computed in closed form. Thus special
techniques are needed for Bayesian computations.

2.1 The E-M Algorithm

Suppose Y |θ has density f(y|θ), and suppose the prior on θ is π(θ), resulting in the posterior density
π(θ|y). When π(θ|y) is computationally difficult to handle, as is usually the case, there are some
’data augmentation’ methods that can help. The idea is to augment the observed data y with missing
or latent data z to obtain the ’complete’ data x = (y, z) so that the augmented posterior density
π(θ|x) = π(θ|y, z) is computationally easy to handle.

The basic steps in the iterations of the E-M algorithm are the following. Let p(z|y, θ) be the predictive
density of Z given y and an estimate θ̂ of θ.

Find z(i) = E(Z|y, θ̂(i)), where θ̂(i) is the estimate of θ used in the ith step of the iteration.

Use z(i) to augment y and maximize π(θ|y, z(i)) to obtain θ̂(i+1). Then find z(i+1) using θ̂(i+1) and
continue this iteration.

Implementation of the E-M Algorithm

π(θ|y) =
π(θ, z|y)

p(z|y, θ)

log[π(θ|y)] = log[π(θ, z|y)]− log[p(z|y, θ)]

Taking expectations with respect to Z|θ̂(i), y

E{log[π(θ|y)]} =

∫
log[π(θ, z|y)p(z|y, θ̂(i)]dz −

∫
log[p(z|y, θ)p(z|y, θ̂(i))]dz

= Q(θ, θ̂(i))−H(θ, θ̂(i))

(1)

Then, the general E-M algorithm involves the following two steps in the ith iteration:

E-Step: Calculate Q(θ, θ̂(i));

M-Step: Maximize Q(θ, θ̂(i)) with respect to θ and obtain θ̂(i+1) such that

max
θ
Q(θ, θ̂(i)) = Q(θ̂(i+1), θ̂(i))

Note that

logπ(θ̂(i+1)|y)−logπ(θ̂(i)|y) =
{
Q(θ̂(i+1), θ̂(i))−Q(θ̂(i), θ̂(i))

}
−
{
H(θ̂(i+1), θ̂(i))−H(θ̂(i), θ̂(i))

}
4



From the E-M Algorithm, we have Q(θ̂(i+1), θ̂(i)) ≥ Q(θ̂(i), θ̂(i)). Further, for any θ,

H(θ, θ̂(i))−H(θ̂(i), θ̂(i)) =

∫
log[p(z|y, θ)p(z|y, θ̂(i))]dz −

∫
log[p(z|y, θ̂(i))p(z|y, θ̂(i))]dz

=

∫
log

[
p(z|y, θ)
p(z|y, θ̂(i))

]
p(z|y, θ̂(i))dz

= −
∫
log

[
p(z|y, θ̂(i))

p(z|y, θ)

]
p(z|y, θ̂(i))dz

≤ 0
(2)

because for any 2 densities p1 and p2,
∫
log(p1(x)/p2(x))p1(x)dx is the Kullback-Leibler distance

between p1 and p2, which is atleast 0. Therefore,

H(θ̂(i+1), θ̂(i))−H(θ̂(i), θ̂(i)) ≤ 0

and hence,

π(θ̂(i+1)|y) ≥ π(θ̂(i)|y)

for any iteration i. Therefore, starting from any point, the E-M algorithm can usually be expected to
converge to a local maximum.

2.2 Monte Carlo Sampling

Consider an expectation that is not available in closed form. An alternative to numerical integration
or analytic approximation to compute this is statistical sampling. This probabilistic technique is a
familiar tool in statistical inference. To estimate a population mean or a population proportion, a
natural approach is to gather a large sample from this population and to consider the corresponding
sample mean or the sample proportion. The law of large numbers guarantees that the estimates so
obtained will be good provided the sample is large enough.

Let f be a probability density function (or a mass function) and suppose the quantity of interest is a
finite expectation of the form.

E[h(X)] =

∫
h(x)f(x)dx

If i.i.d. observations X1, . . . , Xn can be generated from the density f , then

h̄m =
1

m

m∑
i=1

h(Xi)
p−→ E[h(X)]

Monte Carlo Importance Sampling

Suppose that it is difficult or expensive to sample directly from f, but there exists a probability density
u that is very close to f from which it is easy to sample. Then,

E[h(X)] =

∫
h(x)f(x)dx

=

∫
h(x)

f(x)

u(x)
u(x)dx

=

∫
{h(x)w(x)}u(x)dx

= Eu[h(X)w(X)]

(3)
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Now generate X1, . . . , Xm from density u and compute

h̄m =
1

m

m∑
i=1

h(Xi)w(Xi)

The sampling density u is called the importance function.

2.3 Markov Chain Monte Carlo Methods

A severe drawback of the standard Monte Carlo sampling or Monte Carlo importance sampling
is that complete determination of the functional form of the posterior density is needed for their
implementation. Situations where posterior distributions are incompletely specified or are specified
indirectly cannot be handled. One such instance is where the joint posterior distribution of the vector
of parameters is specified in terms of several conditional and marginal distributions, but not directly.
This actually covers a very large range of Bayesian analysis because a lot of Bayesian modeling is
hierarchical so that the joint posterior is difficult to calculate but the conditional posteriors given
parameters at different levels of hierarchy are easier to write down.

Convergence of a random sequence with the Markov property is being utilized in this procedure.

Theorem : (Law of large numbers for Markov chains) Let {Xn}n≥0 be a Markov chain with a
countable state space S and a transition probability matrix P. Further, suppose it is irreducible and has
a stationary probability distribution π ≡ (πi : i ∈ S). Then, for any bounded function h : S → R
and for any initial distribution of X0

1

n

n∑
i=0

h(Xi)
p−→
∑
j

h(j)πj

A sufficient condition for the validity of this LLN is that the Markov chain {Xn} be Harris irreducible
and have a stationary distribution π.

2.3.1 Metropolis-Hastings Algorithm

The idea here is not to directly simulate from the given target density (which may be computationally
very difficult) at all, but to simulate an easy Markov chain that has this target density as the density of
its stationary distribution.

Let S be a finite or countable set. Let π be a probability distribution on S. We shall call π the target
distribution.

Let Q ≡ ((qij)) be a transition probability matrix such that for each i, it is computationally easy
to generate a sample from the distribution {qij : j ∈ S}. Let us generate a Markov chain {Xn} as
follows. If Xn = i first sample from the distribution {qij : j ∈ S} and denote that observation Yn.
Then, choose Xn+1 from the two values Xn and Yn according to

P (Xn+1 = Yn|Xn, Yn) = ρ(Xn, Yn)

P (Xn+1 = Xn|Xn, Yn) = 1− ρ(Xn, Yn),

where the acceptance probability ρ(., .) is given by

ρ(i, j) = min
{

1,
πi
πj

qji
qij

}
for all (i, j) such that πiqij > 0. Note that {Xn} is a Markov Chain with transition probability matrix
P = ((pij)) given by
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pij =

{
qijρij j 6= i

1−
∑
k 6=i pik, j = i

}
Q is called the "propositional transition probability" and ρ the "acceptance probability". A Markov
process is uniquely defined by its transition probabilities, pij the probability of transitioning from
any given state, i, to any other given state, j. It has a unique stationary distribution π(x) when the
following two conditions are met:

1. For every pair of states i, j, the probability of being in state i and transitioning to state j must be
equal to the probability of being in state j and transitioning to state i, πipij = πjpji.

2. The stationary distribution πi must be unique.

We have,

πipij = πjpji

pji
pij

=
πj
πi

The approach is to separate the transition in two sub-steps; the proposal and the acceptance-rejection.
The proposal distribution qij is the conditional probability of proposing a state j given i, and the
acceptance distribution ρij the conditional probability to accept the proposed state j. The transition
probability can be written as the product of them:

pij = qijρij

Inserting this relation in the previous equation, we have

ρij
ρji

=
πj
πi

qji
qij

The next step in the derivation is to choose an acceptance that fulfills the condition above. One
common choice is the Metropolis choice:

ρ(i, j) = min
{

1,
πi
πj

qji
qij

}
i.e., we always accept when the acceptance is bigger than 1, and we reject accordingly when the
acceptance is smaller than 1. This is the required quantity for the algorithm.

2.3.2 Gibbs Sampling

The Gibbs sampler is a technique especially suitable for generating an irreducible aperiodic Markov
chain that has as its stationary distribution a target distribution in a high-dimensional space but having
some special structure.

Suppose we have a joint density f(x, y1 . . . yk) and we are interested in some feature of f(x) (like
E(X))

The Gibbs Algorithm for computing this expectation

Assume we can sample the k+1-many univariate conditional densities:

f(X|y1, . . . , yk)

f(Y1|x, y2, . . . , yk)

f(Y2|x, y1, y3, . . . , yk)

. . .

f(Yk|x, y1, y3, . . . , yk−1)
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Choose, arbitrarily, k initial values: Y1 = y0
1 , Y2 = y0

2 , . . . ., Yk = yk0 .

Draw samples:

x1 ∼ f(X|y1, . . . , yk)

y1
1 ∼ f(Y1|x, y2, . . . , yk)

. . .

y1
k ∼ f(Yk|x, y1, y3, . . . , yk−1)

This constitutes one Gibbs “pass” through the k+1 conditional distributions, yielding values:
(x1, y1

1 , . . . , y
1
k)

Iterate the sampling to form the ith “pass” (x2, yi1, . . . , y
i
k) and so on

As i→∞, xi ∼ f(X).

Theorem: (Hammersley-Clifford) Under the positivity condition, the joint density p satisfies

p(y1, . . . , yk) ∝
k∏
j=1

pj(yj |y1, . . . , yj−1, y
′
j+1, . . . , y

′
k)

pj(y′j |y1, . . . , yj−1, y′j+1, . . . , y
′
k

for every y and y’ in the support of p.

2.4 More Bayesian Methods

2.4.1 Hierarchical Bayes

The prior pdf has an important influence in Bayesian inference. One way of having more control over
the prior is to model the prior in terms of another random variable. This is called the hierarchical
Bayes model, and it is of the form

X|θ ∼ f(x|θ)

Θ|γ ∼ h(θ|γ)

Γ ∼ ψ(γ)

With this model we can exert control over the prior h(θ|γ) by modifying the pdf of the random
variable Γ.

The parameter γ can be thought of a nuisance parameter. It is often called a hyperparameter. As
with regular Bayes, the inference focuses on the parameter θ; hence, the posterior pdf of interest
remains the conditional pdf k(θ|x).

g(θ, γ|x) =
g(x, θ, γ)

g(x)

=
g(x|θ, γ)g(θ, γ)

g(x)

=
f(x|θ)h(θ|γ)ψ(γ)

g(x)

(4)
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Therefore the posterior pdf is given by,

k(θ|x) =

∫∞
−∞ f(x|θ)h(θ|γ)ψ(γ)dθ∫∞

−∞
∫∞
−∞ f(x|θ)h(θ|γ)ψ(γ)dθdψ

Furthermore, assuming squared-error loss, the Bayes estimate of W (θ) is

δW (x) =

∫∞
∞
∫∞
−∞W (θ)f(x|θ)h(θ|γ)ψ(γ)dθ∫∞

−∞
∫∞
−∞ f(x|θ)h(θ|γ)ψ(γ)dθdψ

To obtain the Bayes Estimate of W (θ), we refer to Gibbs Sampler Algorithm. For i = 1, 2, . . . ,m,
at the ith step

Θi|x, γi−1 ∼ g(θ|x, γi−1)

Γi|x, θi ∼ g(γ|x, θi)

as i→∞

Θi
D−→ k(θ|x)

Γi
D−→ g(γ|x)

Furthermore the arithmetic average

1

m− n

m∑
i=n+1

W (Θi)
P−→ E[W (Θ|x)] = δw(x) as m→∞

Because of the Monte Carlo generation these procedures are often called MCMC, for Markov
Chain Monte Carlo procedures.

2.4.2 Emperical Bayes

The empirical Bayes model consists of the first two lines of the hierarchical Bayes model; i.e.,

X|Θ ∼ f(x|θ)

Θ|γ ∼ h(θ|γ)

Instead of attempting to model the parameter γ with a pdf as in hierarchical Bayes, empirical Bayes
methodology estimates γ based on the data as follows.

g(x, θ|γ) =
f(x|θ)h(θ|γ)ψ(γ)

ψ(γ)

= f(x|θ)h(θ|γ)

(5)

Consider, then, the likelihood function

m(x|γ) =

∫ ∞
−∞

f(x|θ)h(θ|γ)dθ

Using the pdfm(x|γ), we obtain an estimate γ̂ = γ̂(x), usually by the method of maximum likelihood.
For inference on the parameter θ, the empirical Bayes procedure uses the posterior pdf k(θ|x, γ̂).
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3 Hypothesis Testing and Model Selection

For Bayesians, model selection and model criticism are extremely important inference problems.
Sometimes these tend to become much more complicated than estimation problems.

3.1 Testing and Bayes Factor

Suppose X having the density f(x|θ) is observed, with θ being an unknown element of the parameter
space Θ. Suppose we are interested in comparing two models M0 and M1 given by:

M0 : X has density f(x|θ) where θ ∈ Θ0

M1 : X has density f(x|θ) where θ ∈ Θ1

We want to test

M0 : θ ∈ Θ versus M1 : θ ∈ Θ

Let π0 and 1− π0 be the prior probabilities of Θ0 and Θ1 . Let gi(θ) be the prior p.d.f. of θ under
Θi, so that ∫

Θi

gi(θ)dθ = 1

The prior in the previous approach is nothing but

π(θ) = π0g0(θ)I{θ ∈ Θ0}+ (1− π0)g1(θ)I{θ ∈ Θ1}

We can calculate the posterior probabilities and posterior odds ratio namely,

P{Θ0|x}
P{Θ1|x}

The Bayes rule for 0-1 loss is to choose the hypothesis with higher posterior probability.

To compute these posterior quantities, note that the marginal density of X under the prior π can be
expressed as:

mπ(x) =

∫
Θ

f(x|θ)π(θ)dθ

= π0

∫
Θ0

f(x|θ)g0(θ)dθ + (1− π0)

∫
Θ1

f(x|θ)g1(θ)dθ

and hence the posterior density of θ|X = x as

π(θ|x) =
f(x|θ)π(θ)

mπ(x)

It follows then that

P (M0|x) = Pπ(Θ0|x) =
π0

mπ(x)

∫
Θ0

f(x|θ)g0(θ)

P (M0|x) = Pπ(Θ0|x) =
1− π1

mπ(x)

∫
Θ1

f(x|θ)g1(θ)
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Then, to compare models M0 and M1 on the basis of a random sample x = (x1, . . . , , xn) one would
use the Bayes factor

BF01 =
m0(x)

m1(x)

where

mi(x) =

∫
Θi

f(x|θ)gi(θ)dθ, i = 0, 1

The posterior odds ratio of M0 relative to M1 is( π0

1− π0

)
BF01

P (M0|x) =
π0m0(x)

π0m0(x) + (1− π0)m1(x)

=
{

1 +
1− π0

π0
BF−1

01

}−1

BF01 is an important evidential measure that is free of π0. The smaller the value of BF01, the
stronger the evidence against M0

Testing a Point Null Hypothesis

The problem is to test:

M0 : θ = θ0 versus M1 : θ 6= θ0

It is not possible to use a continuous prior density because any such prior will necessarily assign prior
probability zero to the null hypothesis. Consequently, the posterior probability of the null hypothesis
will also be zero. Intuitively, this is clear: if the null hypothesis is a priori impossible, it will remain
so a posteriori also.

Therefore, a prior probability of π0 > 0 needs to be assigned to the point θ0 and the remaining
probability of π1 = 1− π0 will be spread over {θ 6= θ0} using a density g1 . Simply take g0 to be a
point mass at θ0

Now the prior π is of form

π(θ) = π0I{θ = θ0}+ (1− π0)g1(θ)I{θ 6= θ0}

3.2 Bayesian Information Criterion

In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is a
criterion for model selection among a finite set of models. It is based, in part, on the likelihood
function, and it is closely related to Akaike information criterion (AIC).

When fitting models, it is possible to increase the likelihood by adding parameters, but doing so may
result in overfitting. The BIC resolves this problem by introducing a penalty term for the number of
parameters in the model. The penalty term is larger in BIC than in AIC.

The BIC is an asymptotic result derived under the assumptions that the data distribution is in the
exponential family. The formula for BIC is

−2 ln f(x|k) ≈ BIC = −2. ln(MLE) + k. ln(n)

k = number of free parameters to be determined
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n = sample size

Given any two estimated models, the model with the lower value of BIC is the one to be preferred.

mi(x) ≈ f(x|θ̂i)gi(θ̂i)(2π)pi/2n−pi/2|H
−1

1,θ̂i
|1/2

where θ̂i is the maximum likelihood estimate for model Mi.

2 logB01 ≈ 2 log
(f(x|θ̂0)

f(x|θ̂1)

)
+ 2 log

(g0(θ̂0)

g1(θ̂1)

)
− (p0 − p1) log

n

2π
+ log

( |H−1

1,θ̂0
|

|H−1

1,θ̂1
|

)

2 logB01 ≈ 2 log
(f(x|θ̂0)

f(x|θ̂1)

)
− (p0 − p1) log n

This is the approximate Bayes factor based on the Bayesian information crite- rion (BIC) due to
Schwarz (1978). The term (p0 − p1) log n can be considered a penalty for using a more complex
model.

A related criterion is

2 log
(f(x|θ̂0)

f(x|θ̂1)

)
− (p0 − p1)

which is based on the Akaike information criterion (AIC), namely,

AIC = 2 log f(x|θ̂)− 2p

for a model f(x|θ). The penalty for using a complex model is not as drastic as that in BIC.

3.3 P-Value and Posterior Probabilities of H0 as Measures of Evidence Against the NULL

One particular tool from classical statistics that is very widely used in applied sciences for model
checking or hypothesis testing is the P-value. It also hap- pens to be one of the concepts that is highly
misunderstood and misused.

P-Value is the probability under a (simple) null hypothesis of obtaining a value of a test statistic that
is at least as extreme as that observed in the sample data.

Suppose that it is desired to test:

H0 : θ = θ0 versus H1 : θ 6= θ

and that a classical significance test is available and is based on a test statistic T(X), large values of
which are deemed to provide evidence against the null hypothesis. If data X = x is observed, with
corresponding t = T (x), the P-value then is

α = Pθ0(T (X) ≥ T (x))

To a Bayesian the posterior probability of H0 summarizes the evidence against H0. In many of
the common cases of testing, the P-value is smaller than the posterior probability by an order of
magnitude. The reason for this is that the P-value ignores the likelihood of the data under the
alternative and takes into account not only the observed deviation of the data from the null hypothesis
as measured by the test statistic but also more significant deviations.

12



3.4 Bounds on Bayes Factors and Posterior Probabilities

There are irreconcilable differences between the classical P-value and the corresponding Bayesian
measures of evidence in many cases. However, one may argue that the differences are perhaps due to
the choice of π0 or g1 that cannot claim to be really ’objective.’ The choice of π0 = 1/2 may not
be crucial because the Bayes factor, B, which does not need this, seems to be providing the same
conclusion, but the choice of g1 does have substantial effect. To counter this argument, let us consider
lower bounds on B and P over wide classes of prior densities. What is surprising is that even these
lower bounds that are based on priors ’least favorable’ to H 0 are typically an order of magnitude
larger than the corresponding P-values for precise null hypotheses.

Thus, in the case of precise null hypotheses, if G is the class of all plausible conditional prior densities
g1 under H0 , we are then lead to the consideration of the following bounds.

B(G, x) = inf
g∈G

B01 =
f(x|θ0)

supg∈Gmg(x)

where mg(x) =
∫
θ 6=θ0 f(x|θ)g(θ)dθ, and

P (H0|G, x) = inf
g∈G

P (H0|x) =
[
1 +

1− π0

π0
B(G, x)−1

]−1

Based on evidence the least possible Bayes factor and posterior probability of H0 are substantially
larger than the corresponding P-value.

3.5 Robust Bayesian Outlier Detection

Because a Bayes factor is a weighted likelihood ratio, it can also be used for checking whether an
observation should be considered an outlier with respect to a certain target model relative to an
alternative model.

X having density f(x|θ) is observed, and it is of interest to compare two models M0 and M1 given
by

M0 : X has density f(x|θ) where θ ∈ Θ0

M1 : X has density f(x|θ) where θ ∈ Θ1

For i = 1, 2, gi(θ) is the prior density of θ, conditional on Mi, being the true model. To compare M0

and M1 on the basis of a random sample x = (x1, . . . , xn) the Bayes factor is given by

B01(x) =
m0(x)

m1(x)

To measure the effect on the Bayes factor of observation xd one could use the quantity

kd = log
( B(x)

B(x−d)

)
where B(x−d) is the Bayes factor excluding observation xd. If kd < 0, then when observation xd is
deleted there is an increase of evidence for M0. Consequently, observation xd itself favors model M1

. The extent to which xd favors M1 determines whether it can be considered an outlier under model
M0. Similarly, a positive value for kd implies that xd favors M0.

Because kd, derived from the Bayes factor, is the Bayesian quantity of inferential interest here, upper
and lower bounds on kd over classes of prior densities are required.

We shall illustrate this approach with a precise null hypothesis. Then we have the problem of
comparing

13



M0 : θ = θ0 versus θ 6= θ0

using a random sample from a population with density f(x|θ). Under M1, suppose θ has the prior
density g, g ∈ Γ. The Bayes factors with all the observations and without the dth observation,
respectively, are

Bg(x) =
f(x|θ)∫

θ 6=θ0 f(x|θ)g(θ)dθ

Bg(x−d) =
f(x−d|θ)∫

θ 6=θ0 f(x−d|θ)g(θ)dθ

Because f(x|θ) = f(x−d|θ)f(xd|θ), we get

kd,g = log
[ f(x|θ0)

f(x−d|θ0)

∫
θ 6=θ0 f(x−d|θ)g(θ)dθ∫
θ 6=θ0 f(x|θ)g(θ)dθ

]
= log f(xd|θ0)− log

[ ∫
θ 6=θ0 f(x|θ)g(θ)dθ∫

θ 6=θ0 f(x−d|θ)g(θ)dθ

]
Now note that to find the extreme values of kd,g , it is enough to find the extreme values of

hd,g =

∫
θ 6=θ0 f(x|θ)g(θ)dθ∫

θ 6=θ0 f(x−d|θ)g(θ)dθ

over the set Γ. Further, this optimization problem can be rewritten as follows:

sup
g∈G

hg,d = sup
g∈G

∫
θ 6=θ0 f(xd|θ)f(x−d|θ)g(θ)dθ∫

θ 6=θ0 f(x−d|θ)g(θ)dθ

= sup
g∗∈G∗

∫
θ 6=θ0

f(xd|θ)g∗(θ)dθ

inf
g∈G

hg,d = inf
g∈G

∫
θ 6=θ0 f(xd|θ)f(x−d|θ)g(θ)dθ∫

θ 6=θ0 f(x−d|θ)g(θ)dθ

= inf
g∗∈G∗

∫
θ 6=θ0

f(xd|θ)g∗(θ)dθ

where

G∗ =

{
g∗ : g∗(θ) =

g(θ)f(x−d|θ)∫
u6=θ0 g(u)f(x−d|θ)du

}

3.6 Nonsubjective Bayes Factors

When subjective specification of prior distributions is not possible, which is frequently the case, one
would look for automatic method that uses standard noninformative priors for calculating Bayes
Factors. There are, however, difficulties with noninformative priors that are typically improper.

A solution to the above problem with improper priors is to use part of the data as a training sample.
The data are divided into two parts, X = (X1, X2). The first part X1 is used as a training sample to
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obtain proper posterior distributions for the parameters (given X1) starting from the noninformative
priors.

Gi(θi|X1) =
fi(X1|θi)g(θi)∫
fi(X1|θi)g(θi)dθi

These proper posteriors are then used as priors to compute the Bayes factor with the remainder of the
data (X2). This conditional Bayes factor, condi- tioned on X1 , can be expressed as

B10(X1) =

∫
f1(X2|θ1)g(θ1|X1)dθ1∫
f0(X2|θ0)g(θ0|X1)dθ0

=
m1(X)

m0(X)

∫
f0(X1|θ0)g(θ0)dθ0∫
f1(X1|θ1)g(θ1)dθ1

= B10
m0(X1)

m1(X2)

A part of the data, X1 , may be used as a training sample as described above if the corresponding
posteriors gi(θi|Xi), i = 0,1 are proper or, equivalently, the marginal densities mi(X1) of X1 under
Mi, i = 0,1 are finite. One would naturally use minimal amount of data as such a training sample
leaving most part of the data for model comparison. A training sample X 1 may be called proper if
0 < mi(X1) <∞, i = 0, 1 and minimal if it is proper and no subset of it is proper.

3.7 The Intrinsic Bayes Factor

As described above, a solution to the problem with improper priors is obtained using a conditional
Bayes factor B10(X1), conditioned on a training sample X1. However, this conditional Bayes factor
depends on the choice the training sample X1 . Let X(l), l = 1,2, ... L be the list of all possible
minimal training samples. Berger and Pericchi (1996a) suggest considering all these minimal training
samples and taking average of the corresponding L conditional Bayes factors B10 (X(l))’s to obtain
what is called the intrinsic Bayes factor (IBF). For example, taking an arithmetic average leads to the
arithmetric intrinsic Bayes factor (AIBF)

AIBF10 = B10
1

L

L∑
l=1

m0(X(l))

m1(X(l))

and the geometric average gives the geometric intrinsic Bayes factor (GIBF)

GIBF10 = B10

(
L∏
l=1

m0(X(l))

m1(X(l))

)

the sum and product in being taken over the L possible training samples X(l), l = 1, . . . , L.

4 Geometric Skew Normal Distribution [2]

It is a new three parameter skewed distribution introduced by Prof. Debasis Kundu of which normal
distribution is a special case. This distribution is obtained by using geometric sum of independent
identically distributed normal random variables. We call this distribution as the geometric skew
normal distribution. Different properties of this new distribution have been investigated. The
probability density function of geometric skew normal distribution can be unimodal or multimodal,
and it always has an increasing hazard rate function.

Definition : Suppose N ∼ GE(p), {Xi : i = 1, . . . } are i.i.d. N(µ, σ2) random variables, and N
and Xi ’s are independently distributed. Define
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X
d
=

N∑
i=1

Xi

.

Then X is said to be GSN random variable with parameters µ, σ and p. It will be denoted as
GSN(µ, σ, p).

The joint PDF, fX,N (x, n) of (X, N ) is given by

fX,N (x, n) =

{
1

σ
√

2πn
e−

1
2nσ2

(x−nµ)2p(1− p)n−1 0 < p < 1
1

σ
√

2π
e−

1
2σ2

(x−µ)2 p = 1

for −∞ < x <∞, σ > 0 and for any positive integer n.

If p 6= 1 the PDF of X becomes,

fX(x) =

∞∑
n=1

fX,N (x, n)

=

∞∑
n=1

1

σ
√

2π
e−

1
2nσ2

(x−nµ)2p(1− p)n−1

Generation from GSN

• Step 1 : Generate from GE(p)
• Step 2 : Generate x from N(mµ,mσ2),and x is the required sample.

Moment Generating Function

If X ∼ GSN(µ, σ, p), then the moment generating function of X becomes,

MX(t) = EetX = E[E(etx|N)] = E[eNµt+
Nσ2t2

2 ] =
peµt+

σ2t2

2

1− (1− p)eµt+σ2t2

2

, t ∈ R

Suppose Y = X1 + · · ·+Xn, where Xi ∼ GSN(µ, σ, p) and X ′is are iid ∀i = 1, . . . , n. Then

MY (t) = (MX(t))n =

(
peµt+

σ2t2

2

1− (1− p)eµt+σ2t2

2

)n
.

(a) Unimodel GSN (b) Bimodal GSN
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4.1 Statistical Inference

In this section, we will compute the Bayes Estimates of GSN distribution given some data. We
will observe that the estimates cannot be obtained in explicit form. So we will emply Metropolis-
Hastings Algorithm to sample from the posterior distribution function and then compute the Bayes
estimates. Suppose we take X = {x1 . . . , xn} as a random sample of size n from GSN(µ, σ, p).
Then the likelihood function L(X;µ, σ, p) is given by:

L(X;µ, σ, p) =

n∏
i=1

{ ∞∑
t=1

p(1− p)t−1

σ
√

2πt
exp

[
− (xi − tµ)2

2tσ2

]}
Further, suppose that µ, σ and p are unknown. Then independent prior are chosen for them. Let the
prior of µ be a gaussian, for σ is inverse gamma and for p is beta distribution.

Let Θ = (µ, σ, p) .Therefore, the complete prior probability P (Θ) can be given by

P (Θ) = f(µ)g(σ)h(p)

where

f(µ) =
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2

g(σ) =
βα

Γ(α)
σ−α−1 exp

(
− β

σ

)
, α > 0 shape, β > 0 scale

h(p) =
pa−1(1− p)b−1

Beta(a, b)
, where Beta(a, b) =

Γ(a)Γ(b)

Γ(a+ b)

Thus, the posterior probability is given by

k(Θ|X) =
L(X|Θ)P (Θ)∫
Θ
L(X|Θ)P (Θ)

=

n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b)

∫∫∫
µσp

n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ

4.1.1 Bayes Estimates of GSN

In this section, we will try to find the bayes estimates of the posterior density function computed
above under squared error loss function. In that case the bayes estimate is given by the mean of the
posterior distribution. The bayes estimates of the indivisual parameters can be computed using

δµ(X) =

∫∫∫
µσp

µ
n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ

∫∫∫
µσp

n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ

δσ(X) =

∫∫∫
µσp

σ
n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ

∫∫∫
µσp

n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ
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δp(X) =

∫∫∫
µσp

p
n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ

∫∫∫
µσp

n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ

Note that the bayes estimates are in the form of ratio of integrals. These cannot be solved analytically.
However, there are various approximation methods introduced to solve such type of integrals. One of
the methods to solve the ratio of integrals is given by Lindley [3]. But here we will not consider that
approach.

We note that the normalising constant of the posterior distribution cannot be obtained analytically.
In this case the best procedure to generate samples from the posterior distribution is by using
Metropolis-Hastings Algorithm.

4.1.2 Metropolis-Hastings Algorithm

The algorithm gives samples from the target distribution. It requires a proposal distribution
function from which we will generate the samples and we accept those samples using the acceptance
probability.

Target Distribution is given by

π(µ, σ, p) =

n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b)

∫∫∫
µσp

n∏
i=1

{
∞∑
t=1

p(1−p)t−1

σ
√

2πt
exp

[
− (xi−tµ)2

2tσ2

]}
1

σ1

√
2π
e
− (µ−µ1)

2σ1
2 βα

Γ(α)σ
−α−1 exp

(
− β

σ

)
pa−1(1−p)b−1

Beta(a,b) dp dσ dµ

Proposal Distribution is given by

q(µ, σ, p) =
( 1

σ
√

2π
exp

[
− (µ− µ′)2

2σ2
2

])(β′α′σα′−1e−β
′σ

Γ(α′)

)(pa′−1(1− p)b′−1

Beta(a′, b′)

)
Generation from proposal distribution: Since µ, σ, and p are independent we can generate them
separately from N (µ′, σ′2), Gamma(α′, β′) and Beta(a′, b′) respectively. We will chose the pa-
rameters of the proposal distribution in a such a way that the mean of the distribution is close to the
actual value and variance of the distribution to be very low for effective sampling.

Since µ, σ and p are independent, we can generate separately from normal distribution, gamma
distribution and beta distribution.

Let x = (x1, x2, x3) be a current state in the markov chain simulated by q. To generate the next
transition state y = (y1, y2, y3) using the current state, simulate

y1 ∼ N (x1, σ
′2)

y2 ∼ Gamma(x2/β
′, β′)

y3 ∼ Beta(λx3, λ(1− x3))

The expected values of theN (x1, σ
′2), Gamma(x2/β

′, β′) and Beta(λx3, λ(1− x3)) are x1, x2 and
x3 respectively. σ′, β′ and λ are chosen in such a way that the variance is low for effective sampling.
So, the new sample generated will be close to the mean if the variance is low.

Acceptance Probability
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ρ(y, x) = min

{
1,
π(y)

π(x)

q(x|y)

q(y|x)

}

The state y = (y1, y2, y3) simulated, is accepted as the next transition state with probability ρ(y, x)

Algorithm 1 Metropolis-Hastings Algorithm

0: Initialization : x(0) ∼ q(µ, σ, p)
0: for i = 1, 2, . . . do
0: y ∼ q(x|x(i−1))

0: Take X(i) =

{
y with probability ρ(y, xi−1)

x(i−1) with probability 1− ρ(y, xi−1)
0:

The markov chain {Xi = (µi, σi, pi), ∀i = 1, 2, . . . } has the stationary distribution as the target
probability density function which is same as our posterior distribution. Therefore, the Bayes
estimates of the posterior parameters can be obtained as

µ̂ =
1

m

m∑
i=1

µi σ̂ =
1

m

m∑
i=1

σi p̂ =
1

m

m∑
i=1

pi

5 Data Analysis

In this section we analyze one data set to see the effectiveness of the proposed model. The data set
consist of 100 samples points and we will compute the bayes estimates of the parameters of the
Geometric Skew Normal Distribution that fit the the given data.

Following the procedure using Metropolis-Hastings Algorithm, we obtain the following Bayes
Estimates

µ̂ = 0.00096 σ̂ = 1.0450 p̂ = 0.569274859

The corresponding 95% Confidence Interval becomes for µ, σ and p are (0.00096 ± 0.0041),
(1.0450± 0.03443306) and (0.5692± 0.02502) respectively.

We also provide a histogram with the fitted PDF

(a) Histogram of the data with the fitted PDF
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6 Conclusions

We explored the different methods to sample from the posterior distribution and obtain the desired
estimates from it. We used Monte Carlo Sampling for generating the samples and calculating the
Bayes estimates of the desired parameters. Monte Carlo sampling based approaches for inference
make use of limit theorems such as the law of large numbers and the central limit theorem to justify
their validity. It may appear at first that this procedure necessarily depends on waiting until the
Markov chain converges to the target invariant distribution, and sampling from this distribution. In
other words, one needs to start a large number of chains beginning with different starting points, and
pick the draws after letting these chains run sufficiently long. This is certainly an option, but the
law of large numbers for dependent chains, says also that this is unnecessary, and one could just
use a single long chain. It may, however, be a good idea to use many different chains to ensure that
convergence indeed takes place.
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